He, Q. F. et al. A extremely distorted ultraelastic chemically advanced Elinvar alloy. Nature 602, 251–257 (2022).
Pang, E. L., Olson, G. B. & Schuh, C. A. Low-hysteresis shape-memory ceramics designed by multimode modelling. Nature 610, 491–495 (2022).
Omori, T. et al. Superelastic impact in polycrystalline ferrous alloys. Science 333, 68–71 (2011).
Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).
Meza, L. R., Das, S. & Greer, J. R. Robust, light-weight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).
Bhattacharya, Okay., Conti, S., Zanzotto, G. & Zimmer, J. Crystal symmetry and the reversibility of martensitic transformations. Nature 428, 55–59 (2004).
Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).
Juan, J. S., Nó, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415–419 (2009).
Gómez-Cortés, J. F. et al. Measurement impact and scaling power-law for superelasticity in shape-memory alloys on the nanoscale. Nat. Nanotechnol. 12, 790–796 (2017).
Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy exhibiting big superelasticity. Science 327, 1488–1490 (2010).
Jones, J. E., Ingham, A. E. & Chapman, S. On the calculation of sure crystal potential constants, and on the cubic crystal of least potential vitality. Proc. R. Soc. A 107, 636–653 (1997).
Schwerdtfeger, P. & Wales, D. J. 100 years of the Lennard-Jones potential. J. Chem. Principle Comput. 20, 3379–3405 (2024).
Wang, Y. et al. Pressure–compression asymmetry in amorphous silicon. Nat. Mater. 20, 1371–1377 (2021).
Panchenko, E., Chumlyakov, Y., Maier, H. J., Timofeeva, E. & Karaman, I. Pressure/compression asymmetry of practical properties in [001]-oriented ferromagnetic NiFeGaCo single crystals. Intermetalics 18, 2458–2463 (2010).
Dong, G. et al. Tremendous-elastic ferroelectric single-crystal membrane with steady electrical dipole rotation. Science 366, 475–479 (2019).
Lai, A., Du, Z., Gan, C. L. & Schuh, C. A. Form reminiscence and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).
Li, Y. et al. Superelastic oxide micropillars enabled by floor rigidity–modulated 90° area switching with wonderful fatigue resistance. PNAS 118, e2025255118 (2021).
Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 92, 214103 (2015).
Wei, Q. & Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).
Guan, Z. et al. Electrical-field-induced room-temperature antiferroelectric–ferroelectric part transition in van der Waals layered GeSe. ACS Nano 16, 1308–1317 (2022).
Lucovsky, G. & White, R. M. Results of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).
Shportko, Okay. et al. Resonant bonding in crystalline phase-change supplies. Nat. Mater. 7, 653–658 (2008).
Guarneri, L. et al. Metavalent bonding in crystalline solids: how does it collapse? Adv. Mater. 33, 2102356 (2021).
Lin, W. T. et al. Extremely pressurized helium nanobubbles promote stacking-fault-mediated deformation in FeNiCoCr high-entropy alloy. Acta Mater. 210, 116843 (2021).
Dang, C. et al. Reaching massive uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).
Bilby, B. A., Crocker, A. G. & Cottrell, A. H. The speculation of the crystallography of deformation twinning. Proc. R. Soc. A 288, 240–255 (1997).
Hannink, R. H. J., Kelly, P. M., & Muddle, B. C. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000).
Kim, D. H. et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on material, vinyl, leather-based, and paper. Adv. Mater. 21, 3703–3707 (2009).
Heremans, P. et al. Mechanical and digital properties of thin-film transistors on plastic, and their integration in versatile digital purposes. Adv. Mater. 28, 4266–4282 (2015).
Nam, S. H. et al. Extremely delicate non-classical pressure gauge utilizing natural heptazole thin-film transistor circuit on a versatile substrate. Adv. Funct. Mater. 24, 4413–4419 (2014).
Zeng, X. M., Lai, A., Gan, C. L. & Schuh, C. A. Crystal orientation dependence of the stress-induced martensitic transformation in zirconia-based form reminiscence ceramics. Acta Mater. 116, 124–135 (2016).
Barraza-Lopez, S., Fregoso, B. M., Villanova, J. W., Parkin, S. S. P. & Chang, Okay. Colloquium: bodily properties of group-IV monochalcogenide monolayers. Rev. Mod. Phys. 93, 011001 (2021).
Hu, Z. et al. Latest progress in 2D group IV–IV monochalcogenides: synthesis, properties and purposes. Nanotechnology 30, 252001 (2019).
Wu, M. & Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 16, 3236–3241 (2016).
Varotto, S. et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 4, 740–747 (2021).
Wang, C., You, L., Cobden, D. & Wang, J. In the direction of two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).
Seidel, J. et al. Conduction at area partitions in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).
Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S. W. Switchable ferroelectric diode and photovoltaic impact in BiFeO3. Science 324, 63–66 (2009).
Absor, M. A. U. & Ishii, F. Intrinsic persistent spin helix state in two-dimensional group-IV monochalcogenide MX monolayers (M = Sn or Ge and X = S, Se, or Te). Phys. Rev. B 100, 115104 (2019).
Wang, H. & Qian, X. Big optical second harmonic era in two-dimensional multiferroics. Nano Lett. 17, 5027–5034 (2017).
Rangel, T. et al. Massive bulk photovoltaic impact and spontaneous polarization of single-layer monochalcogenides. Phys. Rev. Lett. 119, 067402 (2017).
Cook dinner, A. M., Fregoso, B. M., de Juan, F., Coh, S. & Moore, J. E. Design rules for shift present photovoltaics. Nat. Commun. 8, 14176 (2017).
Liu, S. et al. Alloy engineered germanium monochalcogenide with tunable bandgap for broadband optoelectrical purposes. Phys. Rev. Mater. 4, 074012 (2020).
Zhang, Y. et al. Atomic-scale commentary of the deformation and failure of diamonds by in-situ double-tilt mechanical testing transmission electron microscope holder. Sci. China Mater. 63, 2335–2343 (2020).
He, D. S., Li, Z. Y. & Yuan, J. Kinematic HAADF-STEM picture simulation of small nanoparticles. Micron 74, 47–53 (2015).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Wang, C. et al. Extra datasets and movies underlying the manuscript: reversible shuffle twinning yields anisotropic tensile superelasticity in ceramic GeSe. Mater. Cloud https://doi.org/10.24435/materialscloud:98-53 (2025).