Electrosynthesis of pure urea from pretreated flue gasoline in a proton-limited atmosphere established in a porous solid-state electrolyte electrolyser


  • Mao, Y. et al. Ambient electrocatalytic synthesis of urea by co-reduction of NO3 and CO2 over graphene-supported In2O3. Chin. Chem. Lett. 35, 108540 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Excessive-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 1, 45–53 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Zhang, Y., Kuruvinashetti, Ok. & Kornienko, N. Building of C–N bonds from small-molecule precursors by way of heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X., Zhou, X., Jing, Y. & Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 12, 4080 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for inexperienced manufacturing of ammonia. Nat. Maintain. 6, 169–179 (2022).

    Article 

    Google Scholar
     

  • Yin, H.-Q. et al. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures. J. Power Chem. 84, 385–393 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X., Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Mechanism of C–N bonds formation in electrocatalytic urea manufacturing revealed by ab initio molecular dynamics simulation. Nat. Commun. 13, 5471 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Environment friendly urea electrosynthesis from carbon dioxide and nitrate through alternating Cu–W bimetallic C–N coupling websites. Nat. Commun. 14, 4491 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, M. et al. Kinetically matched C–N coupling towards environment friendly urea electrosynthesis enabled on copper single-atom alloy. Nat. Commun. 14, 6994 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea beneath ambient situations. Nat. Chem. 12, 717–724 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Electrocatalytic urea synthesis with 63.5% Faradaic effectivity and 100% N‐selectivity through one‐step C–N coupling. Angew. Chem. Int. Ed. 62, e202305447 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Unveiling electrochemical urea synthesis by co‐activation of CO2 and N2 with Mott–Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 133, 11005–11013 (2021).

    Article 

    Google Scholar
     

  • Yuan, M. et al. Extremely selective electroreduction of N2 and CO2 to urea over synthetic pissed off Lewis pairs. Power Environ. Sci. 14, 6605–6615 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Environment friendly C–N coupling within the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1−xOy clusters. Proc. Natl Acad. Sci. USA 120, e2306841120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, S., Sarkar, S., Adalder, A., Banerjee, A. & Ghorai, U. Ok. Twin steel site-mediated environment friendly C–N coupling towards electrochemical urea synthesis. J. Mater. Chem. A 11, 13249–13254 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiao, D. et al. Boosting the effectivity of urea synthesis through cooperative electroreduction of N2 and CO2 on MoP. J. Mater. Chem. A 11, 232–240 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Electrochemical C–N coupling with perovskite hybrids towards environment friendly urea synthesis. Chem. Sci. 12, 6048–6058 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, M. et al. Synthetic pissed off Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem. Catal. 2, 309–320 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, J. et al. Understanding the location‐selective electrocatalytic co‐discount mechanism for inexperienced urea synthesis utilizing copper phthalocyanine nanotubes. Adv. Funct. Mater. 32, 2200882 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Engineering floor atomic structure of NiTe nanocrystals towards environment friendly electrochemical N2 fixation. Adv. Funct. Mater. 30, 2004208 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Host–visitor molecular interplay promoted urea electrosynthesis over a exactly designed conductive steel–natural framework. Power Environ. Sci. 15, 2084–2095 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, P. et al. Steady carbon seize in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 options as much as 20% by weight utilizing a strong electrolyte. Science 366, 226–231 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. Y. ‘T.’, Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Completely different distributions of multi-carbon merchandise in CO2 and CO electroreduction beneath sensible response situations. Nat. Catal. 6, 1115–1124 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, P. & Wang, H. Excessive-purity and high-concentration liquid fuels by way of CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Romiluyi, O., Danilovic, N., Bell, A. T. & Weber, A. Z. Membrane‐electrode meeting design parameters for optimum CO2 discount. Electrochem. Sci. Adv. 3, e2100186 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fu, X. et al. Steady-flow electrosynthesis of ammonia by nitrogen discount and hydrogen oxidation. Science 379, 707–712 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music, X. et al. One-step formation of urea from carbon dioxide and nitrogen utilizing water microdroplets. J. Am. Chem. Soc. 145, 25910–25916 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, A. T. A novel technique for ionomer coating of Ag nanoparticles used for the electrochemical discount of CO2 to CO in a membrane electrode meeting. Natl Sci. Rev. 11, nwad232 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, C. et al. Steady manufacturing of pure liquid gas options through electrocatalytic CO2 discount utilizing solid-electrolyte units. Nat. Power 4, 776–785 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 discount to high-concentration pure formic acid options in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H.-L. et al. Repeatedly producing extremely concentrated and pure acetic acid aqueous answer through direct electroreduction of CO2. J. Am. Chem. Soc. 146, 1144–1152 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdul-Baki, A. A., Teasdale, J. R., Korcak, R., Chitwood, D. J. & Huettel, R. N. Contemporary-market tomato manufacturing in a low-input various system utilizing cover-crop mulch. HortScience 31, 65–69 (1996).

    Article 

    Google Scholar
     

  • Kumar, V., Mills, D. J., Anderson, J. D. & Mattoo, A. Ok. Another agriculture system is outlined by a definite expression profile of choose gene transcripts and proteins. Proc. Natl Acad. Sci. USA 101, 10535–10540 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, P. et al. Direct and steady era of pure acetic acid options through electrocatalytic carbon monoxide discount. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E. J. et al. Cooperative carbon seize and steam regeneration with tetraamine-appended steel–natural frameworks. Science 369, 392–396 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt, T. et al. Value and Efficiency Baseline for Fossil Power Vegetation Quantity 1: Bituminous Coal and Pure Fuel to Electrical energy (US Division of Power, 2022); https://www.osti.gov/biblio/1893822; https://doi.org/10.2172/1893822

  • Skúlason, E. et al. A theoretical analysis of potential transition steel electro-catalysts for N2 discount. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Resasco, J. & Bell, A. T. Electrocatalytic CO2 discount to fuels: progress and alternatives. Developments Chem. 2, 825–836 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tăbăcaru, A. et al. Nickel(ii) and copper(i, ii)-based steel–natural frameworks incorporating an prolonged tris-pyrazolate linker. CrystEngComm 17, 4992–5001 (2015).

    Article 

    Google Scholar
     

  • Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Maintain. 4, 868–876 (2021).

    Article 

    Google Scholar
     

  • Huang, J. et al. Single‐product faradaic effectivity for electrocatalytic of CO2 to CO at present density bigger than 1.2 A cm−2 in impartial aqueous answer by a single‐atom nanozyme. Angew. Chem. Int. Ed. 61, e202210985 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kar, T., Scheiner, S., Roy, A. Ok. & Bettinger, H. F. Uncommon low-vibrational C=O mode of COOH can distinguish between carboxylated zigzag and armchair single-wall carbon nanotubes. J. Phys. Chem. C 116, 26072–26083 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Giubertoni, G., Sofronov, O. O. & Bakker, H. J. Commentary of distinct carboxylic acid conformers in aqueous answer. J. Phys. Chem. Lett. 10, 3217–3222 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, P. et al. Environment friendly electrosynthesis of urea over single‐atom alloy with digital steel help interplay. Angew. Chem. Int. Ed. 63, e202409019 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, W. et al. Overcoming electrostatic interplay through pulsed electroreduction for enhancing the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. 63, e202402684 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ramadhany, P. et al. Triggering C‒N coupling on steel oxide nanocomposite for the electrochemical discount of CO2 and NOx to formamide. Adv. Power Mater. 14, 2401786 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter programs. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA‐sort density practical constructed with an extended‐vary dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article 
    CAS 

    Google Scholar
     

  • VandeVondele, J. & Hutter, J. Gaussian foundation units for correct calculations on molecular programs in gasoline and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *