Operando X-ray characterization platform to unravel catalyst degradation below accelerated stress testing in CO2 electrolysis


  • Shin, H., Hansen, Ok. U. & Jiao, F. Techno-economic evaluation of low-temperature carbon dioxide electrolysis. Nat. Maintain. 4, 911–919 (2021).

    Article 

    Google Scholar
     

  • Davis, S. J. et al. Internet-zero emissions vitality methods. Science 360, eaas9793 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Maintain. 5, 563–573 (2022).

    Article 

    Google Scholar
     

  • Wakerley, D. et al. Gasoline diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Vitality 7, 130–143 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gabardo, C. M. et al. Steady carbon dioxide electroreduction to concentrated multi-carbon merchandise utilizing a membrane electrode meeting. Joule 3, 2777–2791 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rabiee, H. et al. Gasoline diffusion electrodes (GDEs) for electrochemical discount of carbon dioxide, carbon monoxide, and dinitrogen to value-added merchandise: a evaluation. Vitality Environ. Sci. 14, 1959–2008 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ge, L. et al. Electrochemical CO2 discount in membrane-electrode assemblies. Chem 8, 663–692 (2022).

    Article 
    CAS 

    Google Scholar
     

  • de Sousa, L., Benes, N. E. & Mul, G. Evaluating the results of membranes, cell designs, and stream configurations on the efficiency of Cu-GDEs in changing CO2 to CO. ACS EST Eng. 2, 2034–2042 (2022).

    Article 

    Google Scholar
     

  • Endrődi, B. et al. Excessive carbonate ion conductance of a strong PiperION membrane permits industrial present density and conversion in a zero-gap carbon dioxide electrolyzer cell. Vitality Environ. Sci. 13, 4098–4105 (2020).

    Article 

    Google Scholar
     

  • Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at excessive selectivity, stability and effectivity utilizing sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Constraining CO protection on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. et al. Sequential *CO administration by way of controlling in situ reconstruction for environment friendly industrial-current-density CO2-to-C2+ electroreduction. Proc. Natl Acad. Sci. USA 120, e2302851120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García de Arquer, F. P. et al. CO2 electrolysis to multicarbon merchandise at actions higher than 1 A cm−2. Science 367, 661–666 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Möller, T. et al. The product selectivity zones in gasoline diffusion electrodes throughout the electrocatalytic discount of CO2. Vitality Environ. Sci. 14, 5995–6006 (2021).

    Article 

    Google Scholar
     

  • Ma, M. et al. Insights into the carbon stability for CO2 electroreduction on Cu utilizing gasoline diffusion electrode reactor designs. Vitality Environ. Sci. 13, 977–985 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nwabara, U. O. et al. In the direction of accelerated sturdiness testing protocols for CO2 electrolysis. J. Mater. Chem. A 8, 22557–22571 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Popović, S. et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 discount. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 discount by way of infiltration of hydrophobic particles in a gasoline diffusion layer. ACS Vitality Lett. 7, 2884–2892 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Ok., Kas, R., Smith, W. A. & Burdyny, T. Function of the carbon-based gasoline diffusion layer on flooding in a gasoline diffusion electrode cell for electrochemical CO2 discount. ACS Vitality Lett. 6, 33–40 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gasoline diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vass, Á., Kormányos, A., Kószó, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped alternatives. ACS Catal. 12, 1037–1051 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. The capping agent is the important thing: structural alterations of Ag NPs throughout CO2 electrolysis probed in a zero-gap gas-flow configuration. J. Catal. 404, 371–382 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garg, S. et al. How alkali cations have an effect on salt precipitation and CO2 electrolysis efficiency in membrane electrode meeting electrolyzers. Vitality Environ. Sci. 16, 1631–1643 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Figuring out and assuaging the sturdiness challenges in membrane-electrode-assembly units for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Moss, A. et al. In operando investigations of oscillatory water and carbonate results in MEA-based CO2 electrolysis units. Joule 7, 350–365 (2022).

    Article 

    Google Scholar
     

  • Martens, I., Chattot, R. & Drnec, J. Decoupling catalyst aggregation, ripening, and coalescence processes inside working gasoline cells. J. Energy Sources 521, 230851 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dorofeev, G. A., Streletskii, A. N., Povstugar, I. V., Protasov, A. V. & Elsukov, E. P. Dedication of nanoparticle sizes by X-ray diffraction. Colloid J. 74, 675–685 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Martens, I. et al. X-ray clear proton-exchange membrane gasoline cell design for in situ extensive and small angle scattering tomography. J. Energy Sources 437, 226906 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Aßmann, P., Gago, A. S., Gazdzicki, P., Friedrich, Ok. A. & Wark, M. Towards growing accelerated stress exams for proton trade membrane electrolyzers. Curr. Opin. Electrochem. 21, 225–233 (2020).

    Article 

    Google Scholar
     

  • Li, D. et al. Sturdiness of anion trade membrane water electrolyzers. Vitality Environ. Sci. 14, 3393–3419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Self-cleaning CO2 discount methods: unsteady electrochemical forcing permits stability. ACS Vitality Lett. 6, 809–815 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Disch, J., Bohn, L., Metzler, L. & Vierrath, S. Methods for the mitigation of salt precipitation in zero-gap CO2 electrolyzers producing CO. J. Mater. Chem. A 11, 7344–7357 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Joensen, B. Ó. et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8, 1754–1771 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous analysis of liquid merchandise in high-rate CO2/CO electrolysis. ACS Vitality Lett. 7, 2595–2601 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Enriching surface-accessible CO2 within the zero-gap anion-exchange-membrane-based CO2 electrolyzer. Angew. Chem. Int. Ed. 62, e202214383 (2022).

    Article 

    Google Scholar
     

  • Zeradjanin, A. R., Narangoda, P., Spanos, I., Masa, J. & Schlögl, R. Tips on how to minimise destabilising impact of gasoline bubbles on water splitting electrocatalysts? Curr. Opin. Electrochem. 30, 100797 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Graedel, T. E. Corrosion mechanisms for silver uncovered to the environment. J. Electrochem. Soc. 139, 1963 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Sachan, R. et al. Oxidation-resistant silver nanostructures for ultrastable plasmonic purposes. Adv. Mater. 25, 2045–2050 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. In situ remark of the pH gradient close to the gasoline diffusion electrode of CO2 discount in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Again, S., Yeom, M. S. & Jung, Y. Energetic websites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Clark, E. L. et al. Affect of atomic floor construction on the exercise of Ag for the electrochemical discount of CO2 to CO. ACS Catal. 9, 4006–4014 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Simultaneous SAXS/WAXS/UV–vis research of the nucleation and progress of nanoparticles: a check of classical nucleation principle. Langmuir 31, 11678–11691 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhl, Ok. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition steel surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cofell, E. R. et al. Potential biking of silver cathodes in an alkaline CO2 stream electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Vitality Mater. 5, 12013–12021 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moss, A. et al. Versatile excessive vitality X-ray clear electrolysis cell for operando measurements. J. Energy Sources 562, 232754 (2022).

    Article 

    Google Scholar
     

  • Ashiotis, G. et al. The quick azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kieffer, J. & Karkoulis, D. PyFAI, a flexible library for azimuthal regrouping. J. Phys. Conf. Ser. 425, 202012 (2013).

    Article 

    Google Scholar
     

  • Jinschek, J. R. & Helveg, S. Picture decision and sensitivity in an environmental transmission electron microscope. Micron 43, 1156–1168 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *