Kress, B. & Starner, T. A evaluation of head-mounted shows (HMD) applied sciences and functions for shopper electronics. Photonic Appl. Aerosp. Commer. Harsh Environ. 8720, 62–74 (2013).
Olsson, M. I. Wearable machine with enter and output constructions. US patent 20,130,044,042 (2011).
Zheng, Z., Liu, X., Li, H. & Xu, L. Design and fabrication of an off-axis see-through head-mounted show with an x–y polynomial floor. Appl. Decide. 49, 3661–3668 (2010).
Wei, L., Li, Y., Jing, J., Feng, L. & Zhou, J. Design and fabrication of a compact off-axis see-through head-mounted show utilizing a freeform floor. Decide. Categorical 26, 8550–8565 (2018).
Wu, J. Y. & Kim, J. Prescription AR: a fully-customized prescription-embedded augmented actuality show. Decide. Categorical 28, 6225–6241 (2020).
Huang, H. & Hua, H. Excessive-performance integral-imaging-based mild discipline augmented actuality show utilizing freeform optics. Decide. Categorical 26, 17578–17590 (2018).
Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye shows for digital and augmented actuality. ACM Trans. Graph. 36, 85 (2017).
Jang, C. et al. Retinal 3D: augmented actuality near-eye show through pupil-tracked mild discipline projection on retina. ACM Trans. Graph. 36, 190 (2017).
Kim, S. B. & Park, J. H. Optical see-through Maxwellian near-to-eye show with an enlarged eyebox. Decide. Lett. 43, 767–770 (2018).
Maimone, A. et al. Pinlight shows: large discipline of view augmented actuality eyeglasses utilizing defocused level mild sources. ACM Trans. Graph. 33, 89 (2014).
Jeong, J. et al. Holographically printed freeform mirror array for augmented actuality near-eye show. IEEE Photonics Technol. Lett. 32, 991–994 (2020).
Lee, B., Jo, Y., Yoo, D. & Lee, J. Latest progresses of near-eye show for AR and VR. In Multimodal Sensing and Synthetic Intelligence: Applied sciences and Purposes II (ed. Stella, E.) vol. 11785, 1178503. Worldwide Society for Optics and Photonics (SPIE, 2021).
Kress, B. C. Optical Architectures for Augmented-, Digital-, and Combined-Actuality Headsets (Society of Photograph-Optical Instrumentation Engineers, 2020).
Levola, T. 7.1: Invited paper: novel diffractive optical parts for close to to eye shows. In SID Symposium Digest of Technical Papers, vol. 37, 64–67 (Wiley On-line Library, 2006).
Kress, B. C. & Chatterjee, I. Waveguide combiners for blended actuality headsets: a nanophotonics design perspective. Nanophotonics 10, 41–74 (2021).
Amitai, Y. Substrate-guided optical units. US patent 7,672,055 (2010).
Ding, Y. et al. Waveguide-based augmented actuality shows: views and challenges. eLight 3, 24 (2023).
Cheng, D., Wang, Y., Xu, C., Tune, W. & Jin, G. Design of an ultra-thin near-eye show with geometrical waveguide and freeform optics. Decide. Categorical 22, 20705–20719 (2014).
Xu, M. & Hua, H. Strategies of optimizing and evaluating geometrical mild guides with microstructure mirrors for augmented actuality shows. Decide. Categorical 27, 5523–5543 (2019).
Äyräs, P., Saarikko, P. & Levola, T. Exit pupil expander with a big discipline of view primarily based on diffractive optics. J. Soc. Inf. Disp. 17, 659–664 (2009).
Yeoh, I. L. Wavelength multiplexing in waveguides. US patent 0,329,075 (2017).
Saarikko, P. Waveguide. US patent 0,231,568 (2016).
Yang, Q., Ding, Y. & Wu, S. T. Full-color, large field-of-view single-layer waveguide for augmented actuality shows. J. Soc. Inf. Disp. 32, 247–254 (2024).
Ding, Y., Li, Y., Yang, Q. & Wu, S. T. Design optimization of polarization quantity gratings for full-color waveguide-based augmented actuality shows. J. Soc. Inf. Disp. 31, 380–386 (2023).
Gu, Y. et al. A examine of the sector of view efficiency for full-color waveguide shows primarily based on polarization quantity gratings. Crystals 12, 1805 (2022).
Guo, Q., Zhang, S., Zhang, J. & Chen, C. P. Design of single-layer coloration echelle grating optical waveguide for augmented-reality show. Decide. Categorical 31, 3954–3969 (2023).
Gopakumar, M. et al. Full-colour 3D holographic augmented-reality shows with metasurface waveguides. Nature 629, 791–797 (2024).
Deng, Z. L., Zhang, S. & Wang, G. P. Vast-angled off-axis achromatic metasurfaces for seen mild. Decide. Categorical 24, 23118–23128 (2016).
Huang, L. et al. Dispersionless part discontinuities for controlling mild propagation. Nano Lett. 12, 5750–5755 (2012).
Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling mild with geometric-phase holograms. Decide. Photonics Information 27, 22–29 (2016).
Luo, W., Xiao, S., He, Q., Solar, S. & Zhou, L. Photonic spin Corridor impact with practically 100% effectivity. Adv. Decide. Mater. 3, 1102–1108 (2015).
Tune, N. et al. Broadband achromatic metasurfaces for longwave infrared functions. Nanomaterials 11, 2760 (2021).
Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the seen spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).
Hecht, E. in Optics Ch. 4 (Pearson Edu. Press, 2017).
Azzam, R. M. A. Round and near-circular polarization states of evanescent monochromatic mild fields in whole inner reflection. Appl. Decide. 50, 6272–6276 (2011).
Xiong, J. & Wu, S. T. Planar liquid crystal polarization optics for augmented actuality and digital actuality: from fundamentals to functions. eLight 1, 3 (2021).
Chen, W. T. et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction effectivity. Nat. Commun. 14, 2544 (2023).
Kim, S., Kim, J., Kim, Okay., Jeong, M. & Rho, J. Anti-aliased metasurfaces past the Nyquist restrict. Nat. Commun. 16, 411 (2025).
Brown, R. D. Clear waveguide show. EP patent 2,733,517 (2014).
Gray, D. Exit pupil increasing diffractive optical waveguide machine. US patent 10,359,635 (2019).
Cheng, D. et al. Design and manufacture AR head-mounted shows: a evaluation and outlook. Mild Adv. Manuf. 2, 350–369 (2021).
Liu, S. et al. Waveguide utilizing grating coupler for uniform luminance and coloration AR show. In Optical Design and Testing X, vol. 11548, 74–80 (SPIE, 2022).
Ni, D. et al. Uniformity enchancment of two-dimensional floor reduction grating waveguide show utilizing particle swarm optimization. Decide. Categorical 30, 24523–24543 (2022).
Wall, R. A. Waveguide-based shows with exit pupil expander. US patent 10,025,093 (2017).
Abovitz, R. Planar waveguide equipment with diffraction factor(s) and system using similar. US patent 9,671,566 (2015).
Maikisch, J. S. & Gaylord, T. Okay. Optimum parallel-face slanted surface-relief gratings. Appl. Decide. 46, 3674–3681 (2007).
Jin, G. et al. Excessive effectivity polarization-independent slanted grating for RGB bands. IEEE Photonics J. 13, 1–8 (2021).
Levola, T. Diffractive optics for digital actuality shows. J. Soc. Inf. Disp. 14, 467–475 (2006).
Liu, Y. et al. Slanted TiO2 metagratings for large-angle, high-efficiency anomalous refraction within the seen. Laser Photonics Rev. 17, 2200712 (2023).
Li, T., Cao, L., He, Q. & Jin, G. Slanted quantity holographic gratings design primarily based on rigorous coupled-wave evaluation. In Holography, Diffractive Optics, and Purposes V, vol. 8556, 105–112 (SPIE, 2012).
Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics within the seen. Nat. Mater. 22, 474–481 (2023).
Kim, J. et al. A water-soluble label for meals merchandise prevents packaging waste and counterfeiting. Nat. Meals 5, 293–300 (2024).
Kim, J. et al. Amorphous to crystalline transition in nanoimprinted sol–gel titanium oxide metasurfaces. Adv. Mater. 37, 2405378 (2025).
Kim, J. et al. Wafer-scale, centimeter-sized, high-efficiency metalenses within the ultraviolet. Mater. At this time 73, 9–15 (2024).
Kim, J. et al. One-step printable platform for high-efficiency metasurfaces all the way down to the deep-ultraviolet area. Mild Sci. Appl. 12, 68 (2023).
Choi, M. et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye shows. Nat. Mater. 24, 535–543 (2025).