Ahn, C. H., Rabe, Ok. M. & Triscone, J.-M. Ferroelectricity on the nanoscale: native polarization in oxide skinny movies and heterostructures. Science 303, 488–491 (2004).
Schlom, D. G. et al. Pressure tuning of ferroelectric skinny movies. Annu. Rev. Mater. Res. 37, 589–626 (2007).
Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric skinny movies. Nat. Mater. 10, 963–967 (2011).
Kim, J. et al. Ultrahigh capacitive vitality density in ion-bombarded relaxor ferroelectric movies. Science 369, 81–84 (2020).
Peng, W. et al. Setting up polymorphic nanodomains in BaTiO3 movies by way of epitaxial symmetry engineering. Adv. Funct. Mater. 30, 1910569 (2020).
Lee, D. et al. Emergence of room-temperature ferroelectricity at decreased dimensions. Science 349, 1314–1317 (2015).
Yadav, A. Ok. et al. Statement of polar vortices in oxide superlattices. Nature 530, 198–201 (2015).
Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).
Keech, R. et al. Declamped piezoelectric coefficients in patterned 70/30 lead magnesium niobate–lead titanate skinny movies. Adv. Funct. Mater. 27, 1605014 (2017).
Kim, J. et al. Coupled polarization and nanodomain evolution underpins massive electromechanical responses in relaxors. Nat. Phys. 18, 1502–1509 (2022).
Shetty, S. et al. Relaxor conduct in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) skinny movies. Adv. Funct. Mater. 29, 1804258 (2019).
Naumov, I. I., Bellaiche, L. & Fu, H. Uncommon part transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Eom, C. B. & Trolier-McKinstry, S. Skinny-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012).
Baek, S. H. et al. Large piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).
Pan, H. et al. Ultrahigh–vitality density lead-free dielectric movies by way of polymorphic nanodomain design. Science 365, 578–582 (2019).
Pandya, S. et al. Pyroelectric vitality conversion with massive vitality and energy density in relaxor ferroelectric skinny movies. Nat. Mater. 17, 432–438 (2018).
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
Lindemann, S. et al. Low-voltage magnetoelectric coupling in membrane heterostructures. Sci. Adv. 7, eabh2294 (2021).
Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic native correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013).
Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric stable answer crystals. Nat. Commun. 7, 13807 (2016).
Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar buildings in single-crystal relaxors. Nature 546, 391–395 (2017).
Xu, G., Wen, J., Inventory, C. & Gehring, P. M. Part instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).
Toulouse, J. The three attribute temperatures of relaxor dynamics and their which means. Ferroelectrics 369, 203–213 (2008).
Kim, J. et al. Epitaxial pressure management of relaxor ferroelectric part evolution. Adv. Mater. 31, 1901060 (2019).
Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale native construction in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).
de Mathan, N. et al. A structural mannequin for the relaxor PbMg1/3Nb2/3O3 at 5 Ok. J. Phys. Condens. Matter 3, 8159 (1991).
Jiménez, R. et al. Impact of grain dimension on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics. Phys. Rev. B 78, 094103 (2008).
Randall, C. A., Kim, N., Kucera, J., Cao, W. & Shrout, T. R. Intrinsic and extrinsic dimension results in fantastic‐grained morphotropic‐part‐boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998).
Shaw, T. M., Trolier-McKinstry, S. & McIntyre, P. C. The properties of ferroelectric movies at small dimensions. Mater. Sci. 30, 263–298 (2000).
Blinc, R., Zalar, B., Zupančič, B., Morozovska, A. N. & Glinchuk, M. D. NMR research of dimension results in relaxor PMN nanoparticles. Phys. Stat. Sol. 248, 2653–2655 (2011).
Grigalaitis, R. et al. Measurement results in a relaxor: additional insights into PMN. J. Phys. Condens. Matter 26, 272201 (2014).
Keech, R. et al. Lateral scaling of Pb(Mg1/3Nb2/3)O3-PbTiO3 skinny movies for piezoelectric logic functions. J. Appl. Phys. 115, 234106 (2014).
Riemer, L. M. et al. Dielectric and electro-mechanic nonlinearities in perovskite oxide ferroelectrics, relaxors, and relaxor ferroelectrics. J. Appl. Phys. 129, 054101 (2021).
Kay, H. F. & Dunn, J. W. Thickness dependence of the nucleation discipline of triglycine sulphate. Philos. Magazine. A 7, 2027–2034 (1962).
Burns, G. & Dacol, F. H. Crystalline ferroelectrics with glassy polarization conduct. Phys. Rev. B 28, 2527–2530 (1983).
Dkhil, B. et al. Intermediate temperature scale T∗ in lead-based relaxor programs. Phys. Rev. B 80, 064103 (2009).
Viehland, D., Jang, S., Cross, E. L. & Wuttig, M. The dielectric rest of lead magnesium niobate relaxor ferroelectrics. Phil. Magazine. Half B 64, 335–344 (1991).
Hehlen, B., Al-Sabbagh, M., Al-Zein, A. & Hlinka, J. Relaxor ferroelectrics: again to the single-soft-mode image. Phys. Rev. Lett. 117, 155501 (2016).
Fernandez, A., Kim, J., Meyers, D., Saremi, S. & Martin, L. W. Finite-size results in lead scandium tantalate relaxor skinny movies. Phys. Rev. B 101, 094102 (2020).
Wu, Z., Duan, W., Wu, J., Gu, B.-L. & Zhang, X.-W. Dielectric properties of relaxor ferroelectric movies. J. Appl. Phys. 98, 094105 (2005).
Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective space epitaxy of SrRuO3 utilizing an MgO masks. Adv. Mater. 24, 1610–1615 (2012).
Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).
Frederick, J. et al. Visualization of dielectric constant-electric field-temperature part maps for imprinted relaxor ferroelectric skinny movies. Appl. Phys. Lett. 108, 132902 (2016).
Fong, D. D. et al. Ferroelectricity in ultrathin perovskite movies. Science 304, 1650–1653 (2004).
Grinberg, I., Juhás, P., Davies, P. Ok. & Rappe, A. M. Relationship between Native construction and relaxor conduct in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007).
Carreaud, J. et al. Measurement-driven rest and polar states in PbMg1/3Nb2/3O3-based system. Phys. Rev. B 72, 174115 (2005).
Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electrical-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006).
Xie, A. et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh‐vitality‐storage capacitors. Adv. Mater. 34, 2204356 (2022).
Li, F. et al. Large piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).
Pirc, R. & Blinc, R. Vogel–Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007).
Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting pattern drift distortion with out prior information. Ultramicroscopy 138, 28–35 (2014).
LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Place averaged convergent beam electron diffraction: principle and functions. Ultramicroscopy 110, 118–125 (2010).
Sato, Y. et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear buildings in medical photos. Med. Picture Anal. 2, 143–168 (1998).
Qi, Y. & Rabe, Ok. M. Part competitors in HfO2 with utilized electrical discipline from first rules. Phys. Rev. B 102, 214108 (2020).
Wang, X. & Vanderbilt, D. First-principles perturbative computation of dielectric and Born cost tensors in finite electrical fields. Phys. Rev. B 75, 115116 (2007).
Wang, X. & Vanderbilt, D. First-principles perturbative computation of phonon properties of insulators in finite electrical fields. Phys. Rev. B 74, 054304 (2006).
Kim, J. Dataset of size-driven part evolution in ultrathin relaxor movies. Zenodo https://doi.org/10.5281/zenodo.14510532 (2024).