Non-Hermitian non-Abelian topological transition within the S = 1 electron spin system of a nitrogen emptiness centre in diamond


  • Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials within the quantum concept. Phys. Rev. 115, 485–491 (1959).

    Article 

    Google Scholar
     

  • Klitzing, Ok. V., Dorda, G. & Pepper, M. New methodology for high-accuracy willpower of the fine-structure fixed based mostly on quantized Corridor resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Moore, J. E. The beginning of topological insulators. Nature 464, 194–198 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, X. et al. Topological Maxwell metallic bands in a superconducting qutrit. Phys. Rev. Lett. 120, 130503 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, M. et al. An artificial monopole supply of Kalb-Ramond discipline in diamond. Science 375, 1017–1020 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugawa, S., Salces-Carcoba, F., Perry, A. R., Yue, Y. & Spielman, I. B. Second Chern variety of a quantum-simulated non-abelian Yang monopole. Science 360, 1429–1434 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Q. et al. Experimental statement of non-Abelian topological expenses and edge states. Nature 594, 195–200 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Q., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, B. et al. Experimental statement of non-Abelian topological acoustic semimetals and their section transitions. Nat. Phys. 17, 1239–1246 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bouhon, A. et al. Non-Abelian reciprocal braiding of Weyl factors and its manifestation in ZrTe. Nat. Phys. 16, 1137–1143 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ünal, F. N., Bouhon, A. & Slager, R.-J. Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett. 125, 053601 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Slager, R. J., Bouhon, A. & Ünal, F. N. Non-Abelian Floquet braiding and anomalous Dirac string section in periodically pushed techniques. Nat. Commun. 15, 1144 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruthoff, J. et al. Topological classification of crystalline insulators via band construction combinatorics. Phys. Rev. X 7, 041069 (2017).


    Google Scholar
     

  • Kitaev, A. Periodic desk for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and superconductors: tenfold method and dimensional hierarchy. New J. Phys. 12, 065010 (2010).

    Article 

    Google Scholar
     

  • Berry, M. Physics of nonhermitian degeneracies. Czechoslov. J. Phys. 54, 1039–1047 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Heiss, W. D. The physics of remarkable factors. J. Phys. A Math. Theor. 45, 444016 (2012).

    Article 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. Ok. Distinctive topology of non-Hermitian techniques. Rev. Mod. Phys. 93, 015005 (2021).

    Article 

    Google Scholar
     

  • Ding, Ok., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Article 

    Google Scholar
     

  • Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, H., Zhen, B. & Fu, L. Topological band concept for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Z. Y. et al. Topological phases of non-Hermitian techniques. Phys. Rev. X 8, 031079 (2018).

    CAS 

    Google Scholar
     

  • Kawabata, Ok., Bessho, T. & Sato, M. Classification of remarkable factors and non-Hermitian topological semimetals. Phys. Rev. Lett. 123, 066405 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawabata, Ok., Shiozaki, Ok., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS 

    Google Scholar
     

  • Zhang, W. et al. Commentary of non-Hermitian topology with nonunitary dynamics of strong state spins. Phys. Rev. Lett. 127, 090501 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • König, J. L. Ok., Yang, Ok., Budich, J. C. & Bergholtz, E. J. Braid-protected topological band buildings with unpaired distinctive factors. Phys. Rev. Res. 5, L042010 (2023).

    Article 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Özdemir, Ş. Ok., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gong, Z., Bello, M., Malz, D. & Kunst, F. Ok. Anomalous behaviors of quantum emitters in non-Hermitian baths. Phys. Rev. Lett. 129, 223601 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, W. et al. Reservoir-mediated quantum correlations in non-Hermitian optical system. Phys. Rev. Lett. 124, 030401 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regensburger, A. et al. Parity-time artificial photonic lattices. Nature 488, 167–171 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic buildings. Phys. Rev. Lett. 106, 213901 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Doppler, J. et al. Dynamically encircling an distinctive level for uneven mode switching. Nature 537, 76–79 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassan, A. U., Zhen, B., Soljačić, M., Khajavikhan, M. & Christodoulides, D. N. Dynamically encircling distinctive factors: actual evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, W., Wu, Y., Duan, C.-Ok., Rong, X. & Du, J. Dynamically encircling an distinctive level in an actual quantum system. Phys. Rev. Lett. 126, 170506 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Ok., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. & Mong, R. S. Ok. Homotopical characterization of non-Hermitian band buildings. Phys. Rev. B 103, 155129 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dai, T. et al. Non-Hermitian topological section transitions managed by nonlinearity. Nat. Phys. 20, 101–108 (2024).

  • Guo, C.-X., Chen, S., Ding, Ok. & Hu, H. Distinctive non-Abelian topology in multiband non-Hermitian techniques. Phys. Rev. Lett. 130, 157201 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H., Solar, S. & Chen, S. Knot topology of remarkable level and non-Hermitian no-go theorem. Phys. Rev. Res. 4, L022064 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z.-J., Cardoso, G., Bergholtz, E. J. & Jiang, Q.-D. Braids and higher-order distinctive factors from the interaction between lossy defects and topological boundary states. Phys. Rev. Res. 6, 043023 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Arkhipov, I. I., Miranowicz, A., Minganti, F., Özdemir, Ş. Ok. & Nori, F. Dynamically crossing diabolic factors whereas encircling distinctive curves: a programmable symmetric-asymmetric multimode change. Nat. Commun. 14, 2076 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z., Schnyder, A. P., Hu, J. & Chiu, C.-Ok. Fermion doubling theorems in two-dimensional non-Hermitian techniques for Fermi factors and distinctive factors. Phys. Rev. Lett. 126, 086401 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wojcik, C. C., Solar, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Commentary of parity-time symmetry breaking in a single-spin system. Science 346, 878–880 (2019).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Third-order distinctive line in a nitrogen-vacancy spin system. Nat. Nanotechnol. 19, 160–165 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, W., Ding, Ok. & Ma, G. Direct measurement of topological properties of an distinctive parabola. Phys. Rev. Lett. 127, 034301 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R. Y. et al. Symmetry-protected topological distinctive chains in non-Hermitian crystals. Commun. Phys. 6, 169 (2023).

    Article 

    Google Scholar
     

  • Bouhon, A., Bzdušek, T. & Slager, R.-J. Geometric strategy to fragile topology past symmetry indicators. Phys. Rev. B 102, 115135 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, J., Wojcik, C. C., Cheng, D. & Fan, S. Numerical and theoretical research of eigenenergy braids in two-dimensional photonic crystals. Phys. Rev. B 108, 195413 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y. et al. Fractional quantum Zeno impact rising from non-Hermitian physics. Phys. Rev. X 13, 031009 (2023).

    CAS 

    Google Scholar
     

  • Solar, Ok. & Yi, W. Encircling the Liouvillian distinctive factors: a short overview. AAPPS Bull. 34, 22 (2024).

    Article 

    Google Scholar
     

  • Pavlov, A. I., Gefen, Y. & Shnirman, A. Topological transitions in quantum leap dynamics: hidden distinctive factors. Phys. Rev. B 111, 104301 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *