A modular mRNA vaccine platform encoding antigen-presenting capsid virus-like particles enhances the immunogenicity of the malaria antigen Pfs25


  • CEPI. CEPI Technique for the Second Enterprise Cycle 20222026 (CEPI, 2021); https://static.cepi.web/downloads/2023-12/CEPI-2022-2026-Technique-v3-Jan21_0.pdf

  • Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, I. T. et al. Security and immunogenicity of a part 1/2 randomized scientific trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in wholesome adults: interim evaluation. Nat. Commun. 14, 3631 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Naaber, P. et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal potential examine. Lancet Reg. Well being Eur. 10, 100208 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pegu, A. et al. Sturdiness of mRNA-1273 vaccine-induced antibodies in opposition to SARS-CoV-2 variants. Science 373, 1372–1377 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Soucheray, S. Moderna experiences RSV vaccine 50% efficient after 18 months (2024); https://www.cidrap.umn.edu/respiratory-syncytial-virus-rsv/moderna-reports-rsv-vaccine-50-effective-after-18-months

  • Lee, J., Woodruff, M. C., Kim, E. H. & Nam, J.-H. Knife’s edge: balancing immunogenicity and reactogenicity in mRNA vaccines. Exp. Mol. Med. 55, 1305–1313 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mulligan, M. J. et al. Section I/II examine of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu, P. et al. Vaccine efficacy in opposition to persistent human papillomavirus (HPV) 16/18 an infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in women in India: a multicentre, potential, cohort examine. Lancet Oncol. 22, 1518–1529 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Slifka, M. Ok. & Amanna, I. J. Function of multivalency and antigenic threshold in producing protecting antibody responses. Entrance. Immunol. 10, 956 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Amanna, I. J., Carlson, N. E. & Slifka, M. Ok. Length of humoral immunity to frequent viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharya, D. Instructing sturdy humoral immunity for COVID-19 and different vaccinable ailments. Immunity 55, 945–964 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bachmann, M. F. et al. The affect of antigen group on B cell responsiveness. Science 262, 1448–1451 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachmann, M. F. & Jennings, G. T. Vaccine supply: a matter of dimension, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zakeri, B. et al. Peptide tag forming a fast covalent bond to a protein, by engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Partitions, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382.e17 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fougeroux, C. et al. Capsid-like particles embellished with the SARS-CoV-2 receptor-binding area elicit sturdy virus neutralization exercise. Nat. Commun. 12, 324 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Thrane, S. et al. Bacterial superglue permits simple improvement of environment friendly virus-like particle based mostly vaccines. J. Nanobiotechnol. 14, 30 (2016).

    Article 

    Google Scholar
     

  • Smit, M. J. et al. First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, part 1 scientific trial of the SARS-CoV-2 vaccine ABNCoV2. Lancet Microbe 4, e140–e148 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tursi, N. J., Xu, Z., Kulp, D. W. & Weiner, D. B. Gene-encoded nanoparticle vaccine platforms for in vivo meeting of multimeric antigen to advertise adaptive immunity. WIREs Nanomed. Nanobiotechnol. 15, e1880 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lu, J. et al. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a powerful antiviral-like immune response in mice. Cell Res. 30, 936–939 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, W. et al. The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits sturdy and sturdy protecting immunity in opposition to SARS-CoV-2 in mice. Sign Transduct. Goal. Ther. 6, 340 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Brandys, P. et al. A mRNA vaccine encoding for a RBD 60-mer nanoparticle elicits neutralizing antibodies and protecting immunity in opposition to the SARS-CoV-2 Delta variant in transgenic K18-hACE2 mice. Entrance. Immunol. 13, 912898 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chackerian, B. Virus-like particles: versatile platforms for vaccine improvement. Professional Rev. Vaccines 6, 381–390 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, M. A. G. et al. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that enhance mRNA vaccines. Cell 186, 2380–2391.e9 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mendy, M. et al. Observational examine of vaccine efficacy 24 years after the beginning of hepatitis B vaccination in two Gambian villages: no want for a booster dose. PLoS ONE 8, e58029 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Valéa, I. et al. Immune response to the hepatitis B antigen within the RTS,S/AS01 malaria vaccine, and co-administration with pneumococcal conjugate and rotavirus vaccines in African youngsters: a randomized managed trial. Hum. Vaccines Immunother. 14, 1489–1500 (2018).

    Article 

    Google Scholar
     

  • Schiller, J. & Lowy, D. Explanations for the excessive efficiency of HPV prophylactic vaccines. Vaccine 36, 4768–4773 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sagara, I. et al. Malaria transmission-blocking vaccines Pfs230D1-EPA and Pfs25-EPA in Alhydrogel in wholesome Malian adults; a part 1, randomised, managed trial. Lancet Infect. Dis. 23, 1266–1279 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bruun, T. U. J., Andersson, A.-M. C., Draper, S. J. & Howarth, M. Engineering a rugged nanoscaffold to reinforce plug-and-display vaccination. ACS Nano 12, 8855–8866 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rahikainen, R. et al. Overcoming symmetry mismatch in vaccine nanoassembly by spontaneous amidation. Angew. Chem. Int. Ed. 60, 321–330 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, S., Sunagar, R. & Gosselin, E. Bacterial protein toll-like-receptor agonists: a novel perspective on vaccine adjuvants. Entrance. Immunol. 10, 1144 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, J. Y. J. et al. Bettering the secretion of designed protein assemblies by damaging design of cryptic transmembrane domains. Proc. Natl Acad. Sci. USA 120, e2214556120 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Silveira, M. M., Moreira, G. M. S. G. & Mendonça, M. DNA vaccines in opposition to COVID-19: views and challenges. Life Sci. 267, 118919 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maslow, J. N. et al. DNA vaccines for epidemic preparedness: SARS-CoV-2 and past. Vaccines 11, 1016 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Khobragade, A. et al. Efficacy, security, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy outcomes of a part 3, randomised, double-blind, placebo-controlled examine in India. Lancet 399, 1313–1321 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sadoff, J. et al. Security and efficacy of single-dose Ad26.COV2.S vaccine in opposition to Covid-19. N. Engl. J. Med. 384, 2187–2201 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrade, V. M. et al. Delineation of DNA and mRNA COVID-19 vaccine-induced immune responses in preclinical animal fashions. Hum. Vaccines Immunother. 19, 2281733 (2023).

    Article 

    Google Scholar
     

  • Woldemeskel, B. A., Garliss, C. C. & Blankson, J. N. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that acknowledge SARS-CoV-2 variants and HCoV-NL63. J. Clin. Make investments. 131, e149335 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Freyn, A. W. et al. Antigen modifications enhance nucleoside-modified mRNA-based influenza virus vaccines in mice. Mol. Ther. Strategies Clin. Dev. 22, 84–95 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Melzi, E. et al. Membrane-bound mRNA immunogens decrease the brink to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 55, 2168–2186.e6 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hendricks, G. G. et al. Computationally designed mRNA-launched protein nanoparticle vaccines. Immunity 55, 2168–2186.e6 (2024).

  • Israel, A. et al. Elapsed time since BNT162b2 vaccine and threat of SARS-CoV-2 an infection: take a look at damaging design examine. Brit. Med. J. 375, e067873 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sudharsanan, N., Favaretti, C., Hachaturyan, V., Bärnighausen, T. & Vandormael, A. Results of side-effect threat framing methods on COVID-19 vaccine intentions: a randomized managed trial. eLife 11, e78765 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kjaer, S. Ok. et al. Remaining evaluation of a 14-year long-term follow-up examine of the effectiveness and immunogenicity of the quadrivalent human papillomavirus vaccine in girls from 4 Nordic nations. eClinicalMedicine 23, 100401 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nguyen, D. C. et al. SARS-CoV-2-specific plasma cells aren’t durably established within the bone marrow long-lived compartment after mRNA vaccination. Nat. Med. 31, 235–244 (2024).

  • Bloom, Ok., van den Berg, F. & Arbuthnot, P. Self-amplifying RNA vaccines for infectious ailments. Gene Ther. 28, 117–129 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maruggi, G., Ulmer, J. B., Rappuoli, R. & Yu, D. Self-amplifying mRNA-based vaccine expertise and its mode of motion. Curr. Subjects Microbiol. Immunol. 440, 31–70 (2022).


    Google Scholar
     

  • Swetha, Ok. et al. Current advances within the lipid nanoparticle-mediated supply of mRNA vaccines. Vaccines 11, 658 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ross, J. & Sullivan, T. D. Half-lives of beta and gamma globin messenger RNAs and of protein artificial capability in cultured human reticulocytes. Blood 66, 1149–1154 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallie, D. R. The cap and poly(A) tail operate synergistically to control mRNA translational effectivity. Genes Dev. 5, 2108–2116 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karikó, Ok. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with elevated translational capability and organic stability. Mol. Ther. 16, 1833–1840 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Thess, A. et al. Sequence-engineered mRNA with out chemical nucleoside modifications permits an efficient protein remedy in massive animals. Mol. Ther. 23, 1456–1464 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Love, Ok. T. et al. Lipid-like supplies for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Aljabbari, A. et al. Elucidating the nanostructure of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles. J. Colloid Interface Sci. 633, 907–922 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponnudurai, T. et al. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology 98, 165–173 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Ramjith, J. et al. Quantifying reductions in Plasmodium falciparum infectivity to mosquitos: a pattern dimension calculator to tell scientific trials on transmission-reducing interventions. Entrance. Immunol. 13, 899615 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • McLeod, B. et al. Vaccination with a structure-based stabilized model of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses. Immunity 55, 1680–1692.e8 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *