DeepSeek-R1 now accessible as a totally managed serverless mannequin in Amazon Bedrock


Voiced by Polly

As of January 30, DeepSeek-R1 fashions turned accessible in Amazon Bedrock via the Amazon Bedrock Market and Amazon Bedrock Customized Mannequin Import. Since then, 1000’s of shoppers have deployed these fashions in Amazon Bedrock. Clients worth the sturdy guardrails and complete tooling for secure AI deployment. Immediately, we’re making it even simpler to make use of DeepSeek in Amazon Bedrock via an expanded vary of choices, together with a brand new serverless resolution.

The totally managed DeepSeek-R1 mannequin is now usually accessible in Amazon Bedrock. Amazon Internet Providers (AWS) is the primary cloud service supplier (CSP) to ship DeepSeek-R1 as a totally managed, usually accessible mannequin. You may speed up innovation and ship tangible enterprise worth with DeepSeek on AWS with out having to handle infrastructure complexities. You may energy your generative AI purposes with DeepSeek-R1’s capabilities utilizing a single API within the Amazon Bedrock’s totally managed service and get the advantage of its intensive options and tooling.

In response to DeepSeek, their mannequin is publicly accessible beneath MIT license and gives robust capabilities in reasoning, coding, and pure language understanding. These capabilities energy clever choice help, software program growth, mathematical problem-solving, scientific evaluation, information insights, and complete data administration programs.

As is the case for all AI options, give cautious consideration to information privateness necessities when implementing in your manufacturing environments, examine for bias in output, and monitor your outcomes. When implementing publicly accessible fashions like DeepSeek-R1, contemplate the next:

  • Information safety – You may entry the enterprise-grade safety, monitoring, and price management options of Amazon Bedrock which can be important for deploying AI responsibly at scale, all whereas retaining full management over your information. Customers’ inputs and mannequin outputs aren’t shared with any mannequin suppliers. You should utilize these key safety features by default, together with information encryption at relaxation and in transit, fine-grained entry controls, safe connectivity choices, and obtain varied compliance certifications whereas speaking with the DeepSeek-R1 mannequin in Amazon Bedrock.
  • Accountable AI – You may implement safeguards personalized to your utility necessities and accountable AI insurance policies with Amazon Bedrock Guardrails. This contains key options of content material filtering, delicate info filtering, and customizable safety controls to forestall hallucinations utilizing contextual grounding and Automated Reasoning checks. This implies you may management the interplay between customers and the DeepSeek-R1 mannequin in Bedrock together with your outlined set of insurance policies by filtering undesirable and dangerous content material in your generative AI purposes.
  • Mannequin analysis – You may consider and evaluate fashions to establish the optimum mannequin on your use case, together with DeepSeek-R1, in a number of steps via both computerized or human evaluations through the use of Amazon Bedrock mannequin analysis instruments. You may select computerized analysis with predefined metrics reminiscent of accuracy, robustness, and toxicity. Alternatively, you may select human analysis workflows for subjective or customized metrics reminiscent of relevance, model, and alignment to model voice. Mannequin analysis supplies built-in curated datasets, or you may usher in your personal datasets.

We strongly suggest integrating Amazon Bedrock Guardrails and utilizing Amazon Bedrock mannequin analysis options together with your DeepSeek-R1 mannequin so as to add sturdy safety on your generative AI purposes. To study extra, go to Shield your DeepSeek mannequin deployments with Amazon Bedrock Guardrails and Consider the efficiency of Amazon Bedrock sources.

Get began with the DeepSeek-R1 mannequin in Amazon Bedrock
In the event you’re new to utilizing DeepSeek-R1 fashions, go to the Amazon Bedrock console, select Mannequin entry beneath Bedrock configurations within the left navigation pane. To entry the totally managed DeepSeek-R1 mannequin, request entry for DeepSeek-R1 in DeepSeek. You’ll then be granted entry to the mannequin in Amazon Bedrock.

1. Access DeepSeek-R1 model

Subsequent, to check the DeepSeek-R1 mannequin in Amazon Bedrock, select Chat/Textual content beneath Playgrounds within the left menu pane. Then select Choose mannequin within the higher left, and choose DeepSeek because the class and DeepSeek-R1 because the mannequin. Then select Apply.

2. Select DeepSeek-R1 model

Utilizing the chosen DeepSeek-R1 mannequin, I run the next immediate instance:

A household has $5,000 to save lots of for his or her trip subsequent yr. They will place the cash in a financial savings account incomes 2% curiosity yearly or in a certificates of deposit incomes 4% curiosity yearly however with no entry to the funds till the holiday. In the event that they want $1,000 for emergency bills through the yr, how ought to they divide their cash between the 2 choices to maximise their trip fund?

This immediate requires a fancy chain of thought and produces very exact reasoning outcomes.

3. Test DeepSeek-R1 in the Chat Playground

To study extra about utilization suggestions for prompts, discuss with the README of the DeepSeek-R1 mannequin in its GitHub repository.

By selecting View API request, you too can entry the mannequin utilizing code examples within the AWS Command Line Interface (AWS CLI) and AWS SDK. You should utilize us.deepseek.r1-v1:0 because the mannequin ID.

Here’s a pattern of the AWS CLI command:

aws bedrock-runtime invoke-model 
     --model-id us.deepseek-r1-v1:0 
     --body "{"messages":[{"role":"user","content":[{"type":"text","text":"[n"}]}],max_tokens":2000,"temperature":0.6,"top_k":250,"top_p":0.9,"stop_sequences":["nnHuman:"]}" 
     --cli-binary-format raw-in-base64-out 
     --region us-west-2 
     invoke-model-output.txt

The mannequin helps each the InvokeModel and Converse API. The next Python code examples present easy methods to ship a textual content message to the DeepSeek-R1 mannequin utilizing the Amazon Bedrock Converse API for textual content era.

import boto3
from botocore.exceptions import ClientError

# Create a Bedrock Runtime consumer within the AWS Area you need to use.
consumer = boto3.consumer("bedrock-runtime", region_name="us-west-2")

# Set the mannequin ID, e.g., Llama 3 8b Instruct.
model_id = "us.deepseek.r1-v1:0"

# Begin a dialog with the person message.
user_message = "Describe the aim of a 'whats up world' program in a single line."
dialog = [
    {
        "role": "user",
        "content": [{"text": user_message}],
    }
]

attempt:
    # Ship the message to the mannequin, utilizing a fundamental inference configuration.
    response = consumer.converse(
        modelId=model_id,
        messages=dialog,
        inferenceConfig={"maxTokens": 2000, "temperature": 0.6, "topP": 0.9},
    )

    # Extract and print the response textual content.
    response_text = response["output"]["message"]["content"][0]["text"]
    print(response_text)

besides (ClientError, Exception) as e:
    print(f"ERROR: Cannot invoke '{model_id}'. Cause: {e}")
    exit(1)

To allow Amazon Bedrock Guardrails on the DeepSeek-R1 mannequin, choose Guardrails beneath Safeguards within the left navigation pane, and create a guardrail by configuring as many filters as you want. For instance, when you filter for “politics” phrase, your guardrails will acknowledge this phrase within the immediate and present you the blocked message.

You may check the guardrail with totally different inputs to evaluate the guardrail’s efficiency. You may refine the guardrail by setting denied matters, phrase filters, delicate info filters, and blocked messaging till it matches your wants.

To study extra about Amazon Bedrock Guardrails, go to Cease dangerous content material in fashions utilizing Amazon Bedrock Guardrails within the AWS documentation or different deep dive weblog posts about Amazon Bedrock Guardrails on the AWS Machine Studying Weblog channel.

Right here’s a demo walkthrough highlighting how one can make the most of the totally managed DeepSeek-R1 mannequin in Amazon Bedrock:

Now accessible
DeepSeek-R1 is now accessible totally managed in Amazon Bedrock within the US East (N. Virginia), US East (Ohio), and US West (Oregon) AWS Areas via cross-Area inference. Verify the full Area record for future updates. To study extra, try the DeepSeek in Amazon Bedrock product web page and the Amazon Bedrock pricing web page.

Give the DeepSeek-R1 mannequin a attempt within the Amazon Bedrock console as we speak and ship suggestions to AWS re:Publish for Amazon Bedrock or via your standard AWS Help contacts.

Channy

Up to date on March 10, 2025 — Fastened screenshots of mannequin choice and mannequin ID.