Sánchez SV, Navarro N, Catalán-Figueroa J, Morales JO. Nanoparticles as potential novel therapies for urinary tract infections. Entrance Cell Infect Microbiol. 2021;11:656496.
CDC. Urinary tract an infection (catheter-associated urinary tract an infection [CAUTI] and non-catheter-associated urinary tract an infection [UTI]) occasions. 2023.
Newlands AF, Roberts L, Maxwell Okay, Kramer M, Worth JL, Finlay KA. The recurrent urinary tract an infection symptom scale: improvement and validation of a patient-reported final result measure. BJUI Compass. 2023;4(3):285–97.
Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Illness burden and long-term tendencies of urinary tract infections: A worldwide report. Entrance Public Well being. 2022;10.
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence elements, bladder responses, antibiotic, and non-antibiotic antimicrobial methods. Entrance Microbiol. 2017;8:1566.
Kucheria R, Dasgupta P, Sacks S, Khan M, Sheerin N. Urinary tract infections: new insights into a standard downside. Postgrad Med J. 2005;81(952):83.
Wang M, Wei H, Zhao Y, Shang L, Di L, Lyu C, et al. Evaluation of multidrug-resistant micro organism in 3223 sufferers with hospital-acquired infections (HAI) from a tertiary basic hospital in China. Bosnian J Primary Med Sci. 2019;19(1):86.
Klein RD, Hultgren SJ. Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new remedy methods. Nat Rev Microbiol. 2020;18(4):211–26.
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of an infection and remedy choices. Nat Rev Microbiol. 2015;13(5):269–84.
Abraham SN, Miao Y. The character of immune responses to urinary tract infections. Nat Rev Immunol. 2015;15(10):655–63.
Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. Induction and evasion of host defenses by kind 1-piliated uropathogenic Escherichia coli. Science. 1998;282(5393):1494–7.
Wright KJ, Seed PC, Hultgren SJ. Improvement of intracellular bacterial communities of uropathogenic Escherichia coli relies on kind 1 pili. Cell Microbiol. 2007;9(9):2230–41.
Forbes R, Ali A, Abouhajar A, Brennand C, Brown H, Carnell S, et al. ALternatives to prophylactic antibiotics for the remedy of recurrent urinary tract an infection in ladies (ALTAR): research protocol for a multicentre, pragmatic, patient-randomised, non-inferiority trial. Trials. 2018;19:1–19.
Albert X, Huertas I, Pereiro I, Sanfélix J, Gosalbes V, Perrotta C. Antibiotics for stopping recurrent urinary tract an infection in non-pregnant ladies. Cochrane Database Syst Opinions. 2004(3).
Fisher H, Oluboyede Y, Chadwick T, Abdel-Fattah M, Brennand C, Fader M, et al. Steady low-dose antibiotic prophylaxis for adults with repeated urinary tract infections (AnTIC): a randomised, open-label trial. Lancet Infect Dis. 2018;18(9):957–68.
Anselmo AC, Mitragotri S. Nanoparticles within the clinic: an replace. Bioeng Translational Med. 2019;4(3):e10143.
Chauhan S, Jain N, Nagaich U. Nanodiamonds with highly effective capability for drug supply and biomedical functions: current updates on in vivo research and patents. J Pharm Anal. 2020;10(1):1–12.
Kumari A, Kumar V, Yadav SK. Nanotechnology: a instrument to reinforce therapeutic values of pure plant merchandise. Tendencies Med Res. 2012;7(2):34–42.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based mostly drug supply programs: current developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.
Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, et al. Intracellular hyperthermia for most cancers utilizing magnetite cationic liposomes. J Magn Magn Mater. 1999;194(1–3):176–84.
Cui X, Pei R, Wang Z, Yang F, Ma Y, Dong S, et al. Layer-by-layer meeting of multilayer movies composed of Avidin and biotin-labeled antibody for Immunosensing. Biosens Bioelectron. 2003;18(1):59–67.
Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere-mediated supply of Recombinant AAV vectors in vitro and in vivo. Mol Ther. 2000;1(5):S293.
Salata OV. Functions of nanoparticles in biology and medication. J Nanobiotechnol. 2004;2(1):1–6.
Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer ED, Briand J-P, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10(10):961–6.
Nejabatdoust A, Zamani H, Salehzadeh A. Functionalization of ZnO nanoparticles by glutamic acid and conjugation with Thiosemicarbazide alters expression of efflux pump genes in a number of drug-resistant Staphylococcus aureus strains. Microb Drug Resist. 2019;25(7):966–74.
Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the highly effective nanoweapon in opposition to multidrug-resistant micro organism. J Appl Microbiol. 2012;112(5):841–52.
Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, et al. ZnO nanoparticles enhanced antibacterial exercise of Ciprofloxacin in opposition to Staphylococcus aureus and Escherichia coli. J Biomedical Mater Res Half B: Appl Biomaterials. 2010;93(2):557–61.
Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting Vancomycin on nanoparticles to reinforce antimicrobial actions. Nano Lett. 2003;3(9):1261–3.
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Steel-based nanoparticles as antimicrobial brokers: an outline. Nanomaterials. 2020;10(2):292.
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia Okay. Antimicrobial exercise of the metals and metallic oxide nanoparticles. Mater Sci Engineering: C. 2014;44:278–84.
Malarkodi C, Rajeshkumar S. In vitro bactericidal exercise of biosynthesized CuS nanoparticles in opposition to UTI-causing pathogens. Inorg Nano-Steel Chem. 2017;47(9):1290–7.
Mishra MP, Padhy RN. Antibacterial exercise of inexperienced silver nanoparticles synthesized from Anogeissus acuminata in opposition to multidrug resistant urinary tract infecting micro organism in vitro and host-toxicity testing. J Appl Biomed. 2018;16(2):120–5.
Ahmad N, Ali S, Abbas M, Fazal H, Saqib S, Ali A, et al. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles in opposition to UTI-resistant pathogens. Sci Rep. 2023;13(1):14972.
Jing X, Park JH, Peters TM, Thorne PS. Toxicity of copper oxide nanoparticles in lung epithelial cells uncovered on the air–liquid interface in contrast with in vivo evaluation. Toxicol in Vitro. 2015;29(3):502–11.
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Meals Drug Anal. 2014;22(1):116–27.
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, et al. Silver nanoparticles: toxicity in mannequin organisms as an outline of its hazard for human well being and the atmosphere. J Hazard Mater. 2020;390:121974.
Asharani PV, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish fashions. Nanotechnology. 2008;19(25):255102.
Jacobsen NR, Stoeger T, Van Den Brûle S, Saber AT, Beyerle A, Vietti G, et al. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Meals Chem Toxicol. 2015;85:84–95.
Shen T, Chernysheva MG, Badun GA, Popov AG, Egorov AV, Anuchina NM, et al. Levofloxacin and Amikacin adsorption on nanodiamonds: mechanism and software prospects. Colloids Interfaces. 2022;6(2):35.
Giammarco J, Mochalin VN, Haeckel J, Gogotsi Y. The adsorption of Tetracycline and Vancomycin onto nanodiamond with managed launch. J Colloid Interface Sci. 2016;468:253–61.
Wehling J, Dringen R, Zare RN, Maas M, Rezwan Okay. Bactericidal exercise of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–83.
Iyer JK, Dickey A, Rouhani P, Kaul A, Govindaraju N, Singh RN, et al. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro mannequin of urinary tract an infection pathogenesis. PLoS ONE. 2018;13(1):e0191020.
Barras A, Martin FA, Bande O, Baumann J-S, Ghigo J-M, Boukherroub R, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale. 2013;5(6):2307–16.
Turcheniuk V, Raks V, Issa R, Cooper IR, Cragg PJ, Jijie R, et al. Antimicrobial exercise of menthol modified nanodiamond particles. Diam Relat Mater. 2015;57:2–8.
Rouhani P, Singh RN. Polyethyleneimine-functionalized magnetic Fe3O4 and nanodiamond particles as a platform for amoxicillin supply. J Nanosci Nanotechnol. 2020;20(7):3957–70.
Lee D-Okay, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang C-Y, et al. Nanodiamond–gutta percha composite biomaterials for root Canal remedy. ACS Nano. 2015;9(11):11490–501.
Lee D-Okay, Kee T, Liang Z, Hsiou D, Miya D, Wu B, et al. Scientific validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci. 2017;114(45):E9445–54.
Wang D, Tong Y, Li Y, Tian Z, Cao R, Yang B. PEGylated nanodiamond for chemotherapeutic drug supply. Diam Relat Mater. 2013;36:26–34.
Gwak R, Lee G-J, Kim H, Lee M-Okay, Rhee C-Okay, Dae-Ro C, et al. Environment friendly doxorubicin supply utilizing deaggregated and carboxylated nanodiamonds for most cancers cell remedy. Nanosci Nanatechnol Lett. 2015;7(9):723–8.
Norouzi N, Ong Y, Damle VG, Najafi MBH, Schirhagl R. Impact of medium and aggregation on antibacterial exercise of nanodiamonds. Mater Sci Engineering: C. 2020;112:110930.
Chang BM, Lin HH, Su LJ, Lin WD, Lin RJ, Tzeng YK, et al. Extremely fluorescent nanodiamonds protein-functionalized for cell labeling and concentrating on. Adv Funct Mater. 2013;23(46):5737–45.
Tzeng YK, Faklaris O, Chang BM, Kuo Y, Hsu JH, Chang HC. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed. 2011;50(10):2262–5.
Leung HM, Lau CH, Ho JW-T, Chan MS, Chang TJH, Regulation LH, et al. Focused mind tumor imaging by utilizing discrete biopolymer-coated nanodiamonds throughout the blood–mind barrier. Nanoscale. 2021;13(5):3184–93.
Kulshrestha P, Giese RF, Aga DS. Investigating the molecular interactions of Oxytetracycline in clay and natural matter: insights on elements affecting its mobility in soil. Environ Sci Technol. 2004;38(15):4097–105.
Chan MS, Liu LS, Leung HM, Lo PK. Most cancers-cell-specific mitochondria-targeted drug supply by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9(13):11780–9.
Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu Okay, Wang H, et al. Fluorescent nanodiamonds for monitoring single polymer particles in cells and tissues. Anal Chem. 2023;95(35):13046–54.
Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal – endosomal escape in fluorescent nanodiamonds in several cells. Nanoscale. 2021;13(31):13294–300.
Prabhakar N, Khan MH, Peurla M, Chang H-C, Hänninen PE, Rosenholm JM. Intracellular trafficking of fluorescent nanodiamonds and regulation of their mobile toxicity. ACS Omega. 2017;2(6):2689–93.
Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11(1):50–61.
Wurpel DJ, Totsika M, Allsopp LP, Hartley-Tassell LE, Day CJ, Peters KM, et al. F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans. PLoS ONE. 2014;9(3):e93177.
Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, et al. Intensive mosaic construction revealed by the whole genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci. 2002;99(26):17020–4.
Subramaniam S, Joyce P, Ogunniyi AD, Dube A, Sampson SL, Lehr C-M, et al. Minimal data for conducting and reporting in vitro intracellular an infection assays. ACS Infect Dis. 2024;10(2):337–49.
Meier C, Oelschlaeger TA, Merkert H, Korhonen TK, Hacker J. Potential of the new child meningitis isolate Escherichia coli IHE3034 (O18: K1: H7) to invade epithelial and endothelial cells. Infect Immun. 1996;64:2391–9.
Tulkens PM. Intracellular distribution and exercise of antibiotics. Eur J Clin Microbiol Infect Dis. 1991;10:100–6.
Hardie J, Makabenta JM, Gupta A, Huang R, Cao-Milán R, Goswami R, et al. Selective remedy of intracellular bacterial infections utilizing host cell-targeted bioorthogonal nanozymes. Mater Horiz. 2022;9(5):1489–94.
Jiang L, Greene MK, Insua JL, Pessoa JS, Small DM, Smyth P, et al. Clearance of intracellular Klebsiella pneumoniae an infection utilizing gentamicin-loaded nanoparticles. J Managed Launch. 2018;279:316–25.
Qi H, Shan P, Wang Y, Li P, Wang Okay, Yang L. Nanomedicines for the environment friendly remedy of intracellular micro organism: the ART precept. Entrance Chem. 2021;9:775682.
Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, et al. Concentrating on hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus. MBio. 2020;11(2):10–1128.
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—Implications for human well being and remedy views. EMBO Rep. 2020;21(12):e51034.
Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant endolysins as potential therapeutics in opposition to antibiotic-resistant Staphylococcus aureus: present standing of analysis and novel supply methods. Clin Microbiol Rev. 2018;31(1):10–1128.
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7(10):1147–71.
Bongers S, Hellebrekers P, Leenen LPH, Koenderman L, Hietbrink F. Intracellular penetration and results of antibiotics on Staphylococcus aureus inside human neutrophils: a complete assessment. Antibiotics. 2019;8(2):54.
Qiu Y, Hou Y, Solar F, Chen P, Wang D, Mu H, et al. Hyaluronic acid conjugation facilitates clearance of intracellular bacterial infections by streptomycin with neglectable nephrotoxicity. Glycobiology. 2017;27(9):861–7.
Pearson JC, Gillett E, Gadri ND, Dionne B. Tetracyclines, the previous and the brand new: A story assessment. CMI Commun. 2025;2(1):105059.
Musher DM, Minuth JN, Thorsteinsson SB, Holmes T. Effectiveness of achievable urinary concentrations of tetracyclines in opposition to Tetracycllne-Reslstant pathogenic Micro organism. J Infect Dis. 1975;131(Complement):S40–4.
Rosenstock J, Smith LP, Gurney M, Lee Okay, Weinberg WG, Longfield JN, et al. Comparability of single-dose Tetracycline hydrochloride to traditional remedy of urinary tract infections. Antimicrob Brokers Chemother. 1985;27(4):652–4.
Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines together with glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.
Mawabo IK, Noumedem JAK, Kuiate JR, Kuete V. Tetracycline improved the effectivity of different antimicrobials in opposition to gram-negative multidrug-resistant micro organism. J Infect Public Well being. 2015;8(3):226–33.
Olajuyigbe OO. Synergistic affect of Tetracycline on the antibacterial actions of amoxicillin in opposition to resistant micro organism. J Pharm Allied Well being Sci. 2012;2(1):12–20.
He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, et al. A biodegradable antibacterial alginate/carboxymethyl Chitosan/Kangfuxin sponges for selling blood coagulation and full-thickness wound therapeutic. Int J Biol Macromol. 2021;167:182–92.
Hao Y, Zheng W, Solar Z, Zhang D, Sui Okay, Shen P, et al. Marine polysaccharide-based composite hydrogels containing fucoidan: preparation, physicochemical characterization, and biocompatible analysis. Int J Biol Macromol. 2021;183:1978–86.
Leung HM, Liu LS, Cai Y, Li X, Huang Y, Chu HC, et al. Gentle-Activated Nanodiamond-Primarily based drug supply programs for Spatiotemporal launch of antisense oligonucleotides. Bioconjug Chem. 2024;35(5):623–32.
Chu L, Gao H, Cheng T, Zhang Y, Liu J, Huang F, et al. A charge-adaptive nanosystem for extended and enhanced in vivo antibiotic supply. Chem Commun. 2016;52(37):6265–8.
Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Floor Cost-Switching polymeric nanoparticles for bacterial cell Wall-Focused supply of antibiotics. ACS Nano. 2012;6(5):4279–87.
Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Bioengineered phytomolecules-capped silver nanoparticles utilizing Carissa carandas leaf extract to embed on to urinary catheter to fight UTI pathogens. PLoS ONE. 2021;16(9):e0256748.
Whelan S, Lucey B, Finn Okay. Uropathogenic Escherichia coli (UPEC)-Related urinary tract infections: the molecular foundation for challenges to efficient remedy. Microorganisms [Internet]. 2023;11(9).
Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract an infection. PLoS Med. 2007;4(12):e329.
Klumpp David J, Rycyk Matthew T, Chen Michael C, Thumbikat P, Sengupta S, Schaeffer Anthony J. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to provoke urothelial apoptosis. Infect Immun. 2006;74(9):5106–13.
Wu Y, Weil T. Nanodiamonds for organic functions. Phys Sci Opinions. 2017;2(6).
Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y. Biodistribution and destiny of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100.
Miao C, Zhang Y, Liu G, Yang J, Yu Okay, Lv J, et al. Multi-step methods for synergistic remedy of urinary tract infections based mostly on D-xylose-decorated antimicrobial peptide carbon Dots. Biomaterials. 2024;308:122547.
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated ailments in organs. Oncotarget. 2018;9(6):7204.
Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–66.
McNab F, Mayer-Barber Okay, Sher A, Wack A, O’Garra A. Kind I interferons in infectious illness. Nat Rev Immunol. 2015;15(2):87–103.
Kawai T, Akira S. Toll-like receptors and their crosstalk with different innate receptors in an infection and immunity. Immunity. 2011;34(5):637–50.
Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host protection and immunity. Annu Rev Immunol. 2014;32(1):659–702.
Ricciotti E, FitzGerald GA. Prostaglandins and irritation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.
Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its impact on leukocyte migration and irritation. J Leucocyte Biology. 2007;82(6):1375–81.
Jiang Y-H, Peng C-H, Liu H-T, Kuo H-C. Elevated pro-inflammatory cytokines, C-reactive protein and nerve progress issue expressions in serum of sufferers with interstitial cystitis/bladder ache syndrome. PLoS ONE. 2013;8(10):e76779.
Martins SM, Darlin DJ, Lad PM, Zimmern PE. Interleukin-1B: a clinically related urinary marker. J Urol. 1994;151(5):1198–201.
March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Worth V, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315(6021):641–7.
Nielubowicz GR, Mobley HLT. Host–pathogen interactions in urinary tract an infection. Nat Opinions Urol. 2010;7(8):430–41.
Wei X, Li B, Wu L, Yin X, Zhong X, Li Y, et al. Interleukin-6 will get concerned in response to bacterial an infection and promotes antibody manufacturing in nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2018;89:141–51.
Tanaka T, Narazaki M, Kishimoto T. IL-6 in irritation, immunity, and illness. Chilly Spring Harb Perspect Biol. 2014;6(10):a016295.
Cao YQ, Mantyh PW, Carlson EJ, Gillespie A-M, Epstein CJ, Basbaum AI. Major afferent tachykinins are required to expertise reasonable to intense ache. Nature. 1998;392(6674):390–4.
Cuesta MC, Quintero L, Pons H, Suarez-Roca H. Substance P and calcitonin gene-related peptide enhance IL-1β, IL-6 and TNFα secretion from human peripheral blood mononuclear cells. Neurochem Int. 2002;40(4):301–6.
Rameshwar P, Ganea D, Gascon P. In vitro stimulatory impact of substance P on hematopoiesis. 1993.
Lotz M, Vaughan JH, Carson DA. Impact of neuropeptides on manufacturing of inflammatory cytokines by human monocytes. Science. 1988;241(4870):1218–21.
Li X, Körner H, Liu X. Susceptibility to intracellular infections: contributions of TNF to immune protection. Entrance Microbiol. 2020;11:1643.
Febriza A, Natzir R, Hatta M, As’advert S, Budu B, Kaelan C, et al. The function of IL-6, TNF-α, and VDR in inhibiting the expansion of Salmonella typhi: In vivo research. Open Microbiol J. 2020;14:65–71.
Slaats J, Ten Oever J, van de Veerdonk FL, Netea MG. IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory packages in infections. PLoS Pathog. 2016;12(12):e1005973.
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, et al. Tissue compartmentalization permits Salmonella persistence throughout chemotherapy. Proc Natl Acad Sci. 2021;118(51):e2113951118.
Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial method in opposition to bacterial pathogens. Antibiot [Internet]. 2020;9(4).
Handel A, Margolis E, Levin BR. Exploring the function of the immune response in stopping antibiotic resistance. J Theor Biol. 2009;256(4):655–62.
Pankey GA, Sabath LD. Scientific relevance of bacteriostatic versus bactericidal mechanisms of motion within the remedy of Gram-Optimistic bacterial infections. Clin Infect Dis. 2004;38(6):864–70.
Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. Dangerous bugs and beleaguered bladders: Interaction between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A. 2000;97(16):8829– 35.
Mctaggart LA, Rigby RC, Elliott TSJ. The pathogenesis of urinary tract infections related to Escherichia coli, Staphylococcus Saprophyticus and S. Epidermidis. J Med Microbiol. 1990;32(2):135–41.
Fukushi Y, Orikasa S, Kagayama M. An electron microscopic research of the interplay between vesical epitherlium and E. Coli Make investments Urol. 1979;17(1):61–8.
Kates M, Date A, Yoshida T, Afzal U, Kanvinde P, Babu T, et al. Preclinical analysis of intravesical cisplatin nanoparticles for non–muscle-invasive bladder most cancers. Clin Most cancers Res. 2017;23(21):6592–601.