Harnessing intracellular micro organism in bladder by intravesical supply of antibiotics-loaded nanodiamonds to cut back the recurrence of urinary tract an infection | Journal of Nanobiotechnology


  • Sánchez SV, Navarro N, Catalán-Figueroa J, Morales JO. Nanoparticles as potential novel therapies for urinary tract infections. Entrance Cell Infect Microbiol. 2021;11:656496.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CDC. Urinary tract an infection (catheter-associated urinary tract an infection [CAUTI] and non-catheter-associated urinary tract an infection [UTI]) occasions. 2023.

  • Newlands AF, Roberts L, Maxwell Okay, Kramer M, Worth JL, Finlay KA. The recurrent urinary tract an infection symptom scale: improvement and validation of a patient-reported final result measure. BJUI Compass. 2023;4(3):285–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Illness burden and long-term tendencies of urinary tract infections: A worldwide report. Entrance Public Well being. 2022;10.

  • Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence elements, bladder responses, antibiotic, and non-antibiotic antimicrobial methods. Entrance Microbiol. 2017;8:1566.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kucheria R, Dasgupta P, Sacks S, Khan M, Sheerin N. Urinary tract infections: new insights into a standard downside. Postgrad Med J. 2005;81(952):83.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang M, Wei H, Zhao Y, Shang L, Di L, Lyu C, et al. Evaluation of multidrug-resistant micro organism in 3223 sufferers with hospital-acquired infections (HAI) from a tertiary basic hospital in China. Bosnian J Primary Med Sci. 2019;19(1):86.

    Article 
    CAS 

    Google Scholar
     

  • Klein RD, Hultgren SJ. Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new remedy methods. Nat Rev Microbiol. 2020;18(4):211–26.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of an infection and remedy choices. Nat Rev Microbiol. 2015;13(5):269–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abraham SN, Miao Y. The character of immune responses to urinary tract infections. Nat Rev Immunol. 2015;15(10):655–63.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. Induction and evasion of host defenses by kind 1-piliated uropathogenic Escherichia coli. Science. 1998;282(5393):1494–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wright KJ, Seed PC, Hultgren SJ. Improvement of intracellular bacterial communities of uropathogenic Escherichia coli relies on kind 1 pili. Cell Microbiol. 2007;9(9):2230–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Forbes R, Ali A, Abouhajar A, Brennand C, Brown H, Carnell S, et al. ALternatives to prophylactic antibiotics for the remedy of recurrent urinary tract an infection in ladies (ALTAR): research protocol for a multicentre, pragmatic, patient-randomised, non-inferiority trial. Trials. 2018;19:1–19.

    Article 

    Google Scholar
     

  • Albert X, Huertas I, Pereiro I, Sanfélix J, Gosalbes V, Perrotta C. Antibiotics for stopping recurrent urinary tract an infection in non-pregnant ladies. Cochrane Database Syst Opinions. 2004(3).

  • Fisher H, Oluboyede Y, Chadwick T, Abdel-Fattah M, Brennand C, Fader M, et al. Steady low-dose antibiotic prophylaxis for adults with repeated urinary tract infections (AnTIC): a randomised, open-label trial. Lancet Infect Dis. 2018;18(9):957–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Nanoparticles within the clinic: an replace. Bioeng Translational Med. 2019;4(3):e10143.

  • Chauhan S, Jain N, Nagaich U. Nanodiamonds with highly effective capability for drug supply and biomedical functions: current updates on in vivo research and patents. J Pharm Anal. 2020;10(1):1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Kumari A, Kumar V, Yadav SK. Nanotechnology: a instrument to reinforce therapeutic values of pure plant merchandise. Tendencies Med Res. 2012;7(2):34–42.

    Article 
    CAS 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based mostly drug supply programs: current developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Article 

    Google Scholar
     

  • Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, et al. Intracellular hyperthermia for most cancers utilizing magnetite cationic liposomes. J Magn Magn Mater. 1999;194(1–3):176–84.

    Article 
    CAS 

    Google Scholar
     

  • Cui X, Pei R, Wang Z, Yang F, Ma Y, Dong S, et al. Layer-by-layer meeting of multilayer movies composed of Avidin and biotin-labeled antibody for Immunosensing. Biosens Bioelectron. 2003;18(1):59–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere-mediated supply of Recombinant AAV vectors in vitro and in vivo. Mol Ther. 2000;1(5):S293.


    Google Scholar
     

  • Salata OV. Functions of nanoparticles in biology and medication. J Nanobiotechnol. 2004;2(1):1–6.

    Article 

    Google Scholar
     

  • Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer ED, Briand J-P, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10(10):961–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nejabatdoust A, Zamani H, Salehzadeh A. Functionalization of ZnO nanoparticles by glutamic acid and conjugation with Thiosemicarbazide alters expression of efflux pump genes in a number of drug-resistant Staphylococcus aureus strains. Microb Drug Resist. 2019;25(7):966–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the highly effective nanoweapon in opposition to multidrug-resistant micro organism. J Appl Microbiol. 2012;112(5):841–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, et al. ZnO nanoparticles enhanced antibacterial exercise of Ciprofloxacin in opposition to Staphylococcus aureus and Escherichia coli. J Biomedical Mater Res Half B: Appl Biomaterials. 2010;93(2):557–61.

    Article 

    Google Scholar
     

  • Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting Vancomycin on nanoparticles to reinforce antimicrobial actions. Nano Lett. 2003;3(9):1261–3.

    Article 
    CAS 

    Google Scholar
     

  • Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Steel-based nanoparticles as antimicrobial brokers: an outline. Nanomaterials. 2020;10(2):292.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia Okay. Antimicrobial exercise of the metals and metallic oxide nanoparticles. Mater Sci Engineering: C. 2014;44:278–84.

    Article 
    CAS 

    Google Scholar
     

  • Malarkodi C, Rajeshkumar S. In vitro bactericidal exercise of biosynthesized CuS nanoparticles in opposition to UTI-causing pathogens. Inorg Nano-Steel Chem. 2017;47(9):1290–7.

    Article 
    CAS 

    Google Scholar
     

  • Mishra MP, Padhy RN. Antibacterial exercise of inexperienced silver nanoparticles synthesized from Anogeissus acuminata in opposition to multidrug resistant urinary tract infecting micro organism in vitro and host-toxicity testing. J Appl Biomed. 2018;16(2):120–5.

    Article 

    Google Scholar
     

  • Ahmad N, Ali S, Abbas M, Fazal H, Saqib S, Ali A, et al. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles in opposition to UTI-resistant pathogens. Sci Rep. 2023;13(1):14972.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jing X, Park JH, Peters TM, Thorne PS. Toxicity of copper oxide nanoparticles in lung epithelial cells uncovered on the air–liquid interface in contrast with in vivo evaluation. Toxicol in Vitro. 2015;29(3):502–11.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Meals Drug Anal. 2014;22(1):116–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, et al. Silver nanoparticles: toxicity in mannequin organisms as an outline of its hazard for human well being and the atmosphere. J Hazard Mater. 2020;390:121974.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish fashions. Nanotechnology. 2008;19(25):255102.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jacobsen NR, Stoeger T, Van Den Brûle S, Saber AT, Beyerle A, Vietti G, et al. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Meals Chem Toxicol. 2015;85:84–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shen T, Chernysheva MG, Badun GA, Popov AG, Egorov AV, Anuchina NM, et al. Levofloxacin and Amikacin adsorption on nanodiamonds: mechanism and software prospects. Colloids Interfaces. 2022;6(2):35.

    Article 
    CAS 

    Google Scholar
     

  • Giammarco J, Mochalin VN, Haeckel J, Gogotsi Y. The adsorption of Tetracycline and Vancomycin onto nanodiamond with managed launch. J Colloid Interface Sci. 2016;468:253–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wehling J, Dringen R, Zare RN, Maas M, Rezwan Okay. Bactericidal exercise of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Iyer JK, Dickey A, Rouhani P, Kaul A, Govindaraju N, Singh RN, et al. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro mannequin of urinary tract an infection pathogenesis. PLoS ONE. 2018;13(1):e0191020.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barras A, Martin FA, Bande O, Baumann J-S, Ghigo J-M, Boukherroub R, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale. 2013;5(6):2307–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Turcheniuk V, Raks V, Issa R, Cooper IR, Cragg PJ, Jijie R, et al. Antimicrobial exercise of menthol modified nanodiamond particles. Diam Relat Mater. 2015;57:2–8.

    Article 
    CAS 

    Google Scholar
     

  • Rouhani P, Singh RN. Polyethyleneimine-functionalized magnetic Fe3O4 and nanodiamond particles as a platform for amoxicillin supply. J Nanosci Nanotechnol. 2020;20(7):3957–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee D-Okay, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang C-Y, et al. Nanodiamond–gutta percha composite biomaterials for root Canal remedy. ACS Nano. 2015;9(11):11490–501.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee D-Okay, Kee T, Liang Z, Hsiou D, Miya D, Wu B, et al. Scientific validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci. 2017;114(45):E9445–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang D, Tong Y, Li Y, Tian Z, Cao R, Yang B. PEGylated nanodiamond for chemotherapeutic drug supply. Diam Relat Mater. 2013;36:26–34.

    Article 

    Google Scholar
     

  • Gwak R, Lee G-J, Kim H, Lee M-Okay, Rhee C-Okay, Dae-Ro C, et al. Environment friendly doxorubicin supply utilizing deaggregated and carboxylated nanodiamonds for most cancers cell remedy. Nanosci Nanatechnol Lett. 2015;7(9):723–8.

    Article 

    Google Scholar
     

  • Norouzi N, Ong Y, Damle VG, Najafi MBH, Schirhagl R. Impact of medium and aggregation on antibacterial exercise of nanodiamonds. Mater Sci Engineering: C. 2020;112:110930.

    Article 
    CAS 

    Google Scholar
     

  • Chang BM, Lin HH, Su LJ, Lin WD, Lin RJ, Tzeng YK, et al. Extremely fluorescent nanodiamonds protein-functionalized for cell labeling and concentrating on. Adv Funct Mater. 2013;23(46):5737–45.

    Article 
    CAS 

    Google Scholar
     

  • Tzeng YK, Faklaris O, Chang BM, Kuo Y, Hsu JH, Chang HC. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed. 2011;50(10):2262–5.

    Article 
    CAS 

    Google Scholar
     

  • Leung HM, Lau CH, Ho JW-T, Chan MS, Chang TJH, Regulation LH, et al. Focused mind tumor imaging by utilizing discrete biopolymer-coated nanodiamonds throughout the blood–mind barrier. Nanoscale. 2021;13(5):3184–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kulshrestha P, Giese RF, Aga DS. Investigating the molecular interactions of Oxytetracycline in clay and natural matter: insights on elements affecting its mobility in soil. Environ Sci Technol. 2004;38(15):4097–105.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chan MS, Liu LS, Leung HM, Lo PK. Most cancers-cell-specific mitochondria-targeted drug supply by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9(13):11780–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu Okay, Wang H, et al. Fluorescent nanodiamonds for monitoring single polymer particles in cells and tissues. Anal Chem. 2023;95(35):13046–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal – endosomal escape in fluorescent nanodiamonds in several cells. Nanoscale. 2021;13(31):13294–300.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Prabhakar N, Khan MH, Peurla M, Chang H-C, Hänninen PE, Rosenholm JM. Intracellular trafficking of fluorescent nanodiamonds and regulation of their mobile toxicity. ACS Omega. 2017;2(6):2689–93.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11(1):50–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wurpel DJ, Totsika M, Allsopp LP, Hartley-Tassell LE, Day CJ, Peters KM, et al. F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans. PLoS ONE. 2014;9(3):e93177.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, et al. Intensive mosaic construction revealed by the whole genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci. 2002;99(26):17020–4.

  • Subramaniam S, Joyce P, Ogunniyi AD, Dube A, Sampson SL, Lehr C-M, et al. Minimal data for conducting and reporting in vitro intracellular an infection assays. ACS Infect Dis. 2024;10(2):337–49.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Meier C, Oelschlaeger TA, Merkert H, Korhonen TK, Hacker J. Potential of the new child meningitis isolate Escherichia coli IHE3034 (O18: K1: H7) to invade epithelial and endothelial cells. Infect Immun. 1996;64:2391–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tulkens PM. Intracellular distribution and exercise of antibiotics. Eur J Clin Microbiol Infect Dis. 1991;10:100–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hardie J, Makabenta JM, Gupta A, Huang R, Cao-Milán R, Goswami R, et al. Selective remedy of intracellular bacterial infections utilizing host cell-targeted bioorthogonal nanozymes. Mater Horiz. 2022;9(5):1489–94.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang L, Greene MK, Insua JL, Pessoa JS, Small DM, Smyth P, et al. Clearance of intracellular Klebsiella pneumoniae an infection utilizing gentamicin-loaded nanoparticles. J Managed Launch. 2018;279:316–25.

    Article 
    CAS 

    Google Scholar
     

  • Qi H, Shan P, Wang Y, Li P, Wang Okay, Yang L. Nanomedicines for the environment friendly remedy of intracellular micro organism: the ART precept. Entrance Chem. 2021;9:775682.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, et al. Concentrating on hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus. MBio. 2020;11(2):10–1128.

    Article 

    Google Scholar
     

  • Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—Implications for human well being and remedy views. EMBO Rep. 2020;21(12):e51034.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant endolysins as potential therapeutics in opposition to antibiotic-resistant Staphylococcus aureus: present standing of analysis and novel supply methods. Clin Microbiol Rev. 2018;31(1):10–1128.

    Article 

    Google Scholar
     

  • Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7(10):1147–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bongers S, Hellebrekers P, Leenen LPH, Koenderman L, Hietbrink F. Intracellular penetration and results of antibiotics on Staphylococcus aureus inside human neutrophils: a complete assessment. Antibiotics. 2019;8(2):54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiu Y, Hou Y, Solar F, Chen P, Wang D, Mu H, et al. Hyaluronic acid conjugation facilitates clearance of intracellular bacterial infections by streptomycin with neglectable nephrotoxicity. Glycobiology. 2017;27(9):861–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pearson JC, Gillett E, Gadri ND, Dionne B. Tetracyclines, the previous and the brand new: A story assessment. CMI Commun. 2025;2(1):105059.

  • Musher DM, Minuth JN, Thorsteinsson SB, Holmes T. Effectiveness of achievable urinary concentrations of tetracyclines in opposition to Tetracycllne-Reslstant pathogenic Micro organism. J Infect Dis. 1975;131(Complement):S40–4.

    Article 
    PubMed 

    Google Scholar
     

  • Rosenstock J, Smith LP, Gurney M, Lee Okay, Weinberg WG, Longfield JN, et al. Comparability of single-dose Tetracycline hydrochloride to traditional remedy of urinary tract infections. Antimicrob Brokers Chemother. 1985;27(4):652–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines together with glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mawabo IK, Noumedem JAK, Kuiate JR, Kuete V. Tetracycline improved the effectivity of different antimicrobials in opposition to gram-negative multidrug-resistant micro organism. J Infect Public Well being. 2015;8(3):226–33.

    Article 
    PubMed 

    Google Scholar
     

  • Olajuyigbe OO. Synergistic affect of Tetracycline on the antibacterial actions of amoxicillin in opposition to resistant micro organism. J Pharm Allied Well being Sci. 2012;2(1):12–20.


    Google Scholar
     

  • He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, et al. A biodegradable antibacterial alginate/carboxymethyl Chitosan/Kangfuxin sponges for selling blood coagulation and full-thickness wound therapeutic. Int J Biol Macromol. 2021;167:182–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hao Y, Zheng W, Solar Z, Zhang D, Sui Okay, Shen P, et al. Marine polysaccharide-based composite hydrogels containing fucoidan: preparation, physicochemical characterization, and biocompatible analysis. Int J Biol Macromol. 2021;183:1978–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Leung HM, Liu LS, Cai Y, Li X, Huang Y, Chu HC, et al. Gentle-Activated Nanodiamond-Primarily based drug supply programs for Spatiotemporal launch of antisense oligonucleotides. Bioconjug Chem. 2024;35(5):623–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chu L, Gao H, Cheng T, Zhang Y, Liu J, Huang F, et al. A charge-adaptive nanosystem for extended and enhanced in vivo antibiotic supply. Chem Commun. 2016;52(37):6265–8.

    Article 
    CAS 

    Google Scholar
     

  • Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Floor Cost-Switching polymeric nanoparticles for bacterial cell Wall-Focused supply of antibiotics. ACS Nano. 2012;6(5):4279–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Bioengineered phytomolecules-capped silver nanoparticles utilizing Carissa carandas leaf extract to embed on to urinary catheter to fight UTI pathogens. PLoS ONE. 2021;16(9):e0256748.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Whelan S, Lucey B, Finn Okay. Uropathogenic Escherichia coli (UPEC)-Related urinary tract infections: the molecular foundation for challenges to efficient remedy. Microorganisms [Internet]. 2023;11(9).

  • Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract an infection. PLoS Med. 2007;4(12):e329.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klumpp David J, Rycyk Matthew T, Chen Michael C, Thumbikat P, Sengupta S, Schaeffer Anthony J. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to provoke urothelial apoptosis. Infect Immun. 2006;74(9):5106–13.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu Y, Weil T. Nanodiamonds for organic functions. Phys Sci Opinions. 2017;2(6).

  • Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y. Biodistribution and destiny of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100.

    Article 
    CAS 

    Google Scholar
     

  • Miao C, Zhang Y, Liu G, Yang J, Yu Okay, Lv J, et al. Multi-step methods for synergistic remedy of urinary tract infections based mostly on D-xylose-decorated antimicrobial peptide carbon Dots. Biomaterials. 2024;308:122547.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated ailments in organs. Oncotarget. 2018;9(6):7204.

    Article 
    PubMed 

    Google Scholar
     

  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McNab F, Mayer-Barber Okay, Sher A, Wack A, O’Garra A. Kind I interferons in infectious illness. Nat Rev Immunol. 2015;15(2):87–103.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kawai T, Akira S. Toll-like receptors and their crosstalk with different innate receptors in an infection and immunity. Immunity. 2011;34(5):637–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host protection and immunity. Annu Rev Immunol. 2014;32(1):659–702.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ricciotti E, FitzGerald GA. Prostaglandins and irritation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its impact on leukocyte migration and irritation. J Leucocyte Biology. 2007;82(6):1375–81.

    Article 

    Google Scholar
     

  • Jiang Y-H, Peng C-H, Liu H-T, Kuo H-C. Elevated pro-inflammatory cytokines, C-reactive protein and nerve progress issue expressions in serum of sufferers with interstitial cystitis/bladder ache syndrome. PLoS ONE. 2013;8(10):e76779.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Martins SM, Darlin DJ, Lad PM, Zimmern PE. Interleukin-1B: a clinically related urinary marker. J Urol. 1994;151(5):1198–201.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Worth V, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315(6021):641–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nielubowicz GR, Mobley HLT. Host–pathogen interactions in urinary tract an infection. Nat Opinions Urol. 2010;7(8):430–41.

    Article 
    CAS 

    Google Scholar
     

  • Wei X, Li B, Wu L, Yin X, Zhong X, Li Y, et al. Interleukin-6 will get concerned in response to bacterial an infection and promotes antibody manufacturing in nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2018;89:141–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in irritation, immunity, and illness. Chilly Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao YQ, Mantyh PW, Carlson EJ, Gillespie A-M, Epstein CJ, Basbaum AI. Major afferent tachykinins are required to expertise reasonable to intense ache. Nature. 1998;392(6674):390–4.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cuesta MC, Quintero L, Pons H, Suarez-Roca H. Substance P and calcitonin gene-related peptide enhance IL-1β, IL-6 and TNFα secretion from human peripheral blood mononuclear cells. Neurochem Int. 2002;40(4):301–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rameshwar P, Ganea D, Gascon P. In vitro stimulatory impact of substance P on hematopoiesis. 1993.

  • Lotz M, Vaughan JH, Carson DA. Impact of neuropeptides on manufacturing of inflammatory cytokines by human monocytes. Science. 1988;241(4870):1218–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li X, Körner H, Liu X. Susceptibility to intracellular infections: contributions of TNF to immune protection. Entrance Microbiol. 2020;11:1643.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Febriza A, Natzir R, Hatta M, As’advert S, Budu B, Kaelan C, et al. The function of IL-6, TNF-α, and VDR in inhibiting the expansion of Salmonella typhi: In vivo research. Open Microbiol J. 2020;14:65–71.

  • Slaats J, Ten Oever J, van de Veerdonk FL, Netea MG. IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory packages in infections. PLoS Pathog. 2016;12(12):e1005973.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, et al. Tissue compartmentalization permits Salmonella persistence throughout chemotherapy. Proc Natl Acad Sci. 2021;118(51):e2113951118.

  • Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial method in opposition to bacterial pathogens. Antibiot [Internet]. 2020;9(4).

  • Handel A, Margolis E, Levin BR. Exploring the function of the immune response in stopping antibiotic resistance. J Theor Biol. 2009;256(4):655–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pankey GA, Sabath LD. Scientific relevance of bacteriostatic versus bactericidal mechanisms of motion within the remedy of Gram-Optimistic bacterial infections. Clin Infect Dis. 2004;38(6):864–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. Dangerous bugs and beleaguered bladders: Interaction between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A. 2000;97(16):8829– 35.

  • Mctaggart LA, Rigby RC, Elliott TSJ. The pathogenesis of urinary tract infections related to Escherichia coli, Staphylococcus Saprophyticus and S. Epidermidis. J Med Microbiol. 1990;32(2):135–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fukushi Y, Orikasa S, Kagayama M. An electron microscopic research of the interplay between vesical epitherlium and E. Coli Make investments Urol. 1979;17(1):61–8.

    PubMed 
    CAS 

    Google Scholar
     

  • Kates M, Date A, Yoshida T, Afzal U, Kanvinde P, Babu T, et al. Preclinical analysis of intravesical cisplatin nanoparticles for non–muscle-invasive bladder most cancers. Clin Most cancers Res. 2017;23(21):6592–601.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *