Microglia-targeting nanosystems that cooperatively ship Chinese language natural elements alleviate behavioral and cognitive deficits in Alzheimer’s illness mannequin mice | Journal of Nanobiotechnology


  • O’Keeffe M, Booker SA, Walsh D, Li M, Henley C, Simões de Oliveira L, Liu M, Wang X, Banqueri M, Ridley Ok, et al. Typical improvement of synaptic and neuronal properties can proceed with out microglia within the cortex and thalamus. Nat Neurosci. 2025;28(2):268–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baligács N, Albertini G, Borrie SC, Serneels L, Pridans C, Balusu S, De Strooper B. Homeostatic microglia initially seed and activated microglia later reshape amyloid plaques in Alzheimer’s illness. Nat Commun. 2024;15(1):10634.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geloso MC, Zupo L, Corvino V. Crosstalk between peripheral irritation and mind: give attention to the responses of microglia and astrocytes to peripheral problem. Neurochem Int. 2024;180:105872.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernier LP, York EM, MacVicar BA. Immunometabolism within the mind: how metabolism shapes microglial perform. Developments Neurosci. 2020;43(11):854–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N, Prosper S, Viswanathan S, Luna X, Boix CA, et al. Human microglial state dynamics in Alzheimer’s illness development. Cell. 2023;186(20):4386–e44034329.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, He Y, Liu J, Berberine. A multifaceted agent for lung most cancers treatment-from molecular perception to scientific purposes. Gene. 2025;934:149021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Y-J, Cheng Y-H, Zhu H-Q, Wu Y-L, Nan J-X, Lian L-H. Palmatine, an isoquinoline alkaloid from Phellodendron amurense Rupr., ameliorated gouty irritation by inhibiting pyroptosis through NLRP3 inflammasome. J Ethnopharmacol. 2025;340:119231.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–mind barrier: construction, regulation and drug supply. Sign Transduct Goal Ther. 2023;8(1):217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Zou J, He Z, Solar Y, Track X, He W. The interplay between particles and vascular endothelium in blood move. Adv Drug Del Rev. 2024;207:115216.

    Article 
    CAS 

    Google Scholar
     

  • Ashique S, Pal R, Sharma H, Mishra N, Garg A. Unraveling the rising area of interest function of extracellular vesicles (EVs) in traumatic mind damage (TBI). CNS Neurol Disord Drug Targets. 2024;23(11):1357–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang P, Wang Y, Li P, Chen C, Ma S, Zhao L, He H, Yin T, Zhang Y, Tang X, Gou J. Oral supply of polyester nanoparticles for brain-targeting: challenges and alternatives. Chin Chem Lett. 2023;34(4):107691.

    Article 
    CAS 

    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, Zhao Y, Zhao X, Wang X, Ma Y, et al. Giant-scale technology of useful mRNA-encapsulating exosomes through mobile nanoporation. Nat Biomed Eng. 2020;4(1):69–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia Ok, Javadzadeh Y. Present data of hybrid nanoplatforms composed of exosomes and natural/inorganic nanoparticles for illness remedy and cell/tissue imaging. Biomed Pharmacother. 2024;178:117248.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S, Thalla M, Jain A, Palakurthi S. A complete evaluation of challenges and advances in exosome-based drug supply techniques. Nanoscale Adv. 2024;6(23):5803–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Track X, Gu L, Yang Q, Wu J, Chen J, Tian X, Solar L, Chen L. Thermosensitive injectable hydrogel loaded with hypoxia-induced exosomes maintains chondrocyte phenotype by means of NDRG3-mediated hypoxic response. Chin Chem Lett. 2023;34(8):108079.

    Article 
    CAS 

    Google Scholar
     

  • Xiao Q, Li X, Liu C, Yang Y, Hou Y, Wang Y, Su M, He W. Liposome-based anchoring and core-encapsulation for combinatorial most cancers remedy. Chin Chem Lett. 2022;33(9):4191–6.

    Article 
    CAS 

    Google Scholar
     

  • Xiao Q, Li X, Liu C, Jiang Y, He Y, Zhang W, Azevedo HS, Wu W, Xia Y, He W. Bettering most cancers immunotherapy through co-delivering checkpoint Blockade and thrombospondin-1 downregulator. Acta Pharm Sin B. 2023;13(8):3503–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan J, Guo M, Zhao S, Li J, Wang X, Yang J, Jin Z, Track X. Core-shell lipid-polymeric nanoparticles for enhanced oral bioavailability and antihypertensive efficacy of KY5 peptide. Chin Chem Lett. 2023;34(4):107943.

    Article 
    CAS 

    Google Scholar
     

  • Wang T, Fu Y, Solar S, Huang C, Yi Y, Wang J, Deng Y, Wu M. Exosome-based drug supply techniques in most cancers remedy. Chin Chem Lett. 2023;34(2):107508.

    Article 
    CAS 

    Google Scholar
     

  • Hao X, Gan J, Cao J, Zhang D, Liang J, Solar L. Biomimetic liposomes hybrid with erythrocyte membrane modulate dendritic cells to ameliorate systemic lupus erythematosus. Mater At this time Bio. 2023;20:100625.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng T, Tang M, Yee Paek S, Leung E, Chamley LW, Wu Z. A easy method to re-engineering small extracellular vesicles to avoid endosome entrapment. Int J Pharm. 2022;626:122153.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma H, Rachamalla HK, Mishra N, Chandra P, Pathak R, Ashique S. Introduction to exosome and its function in mind issues. Singapore: Springer; 2024.

    Guide 

    Google Scholar
     

  • Kumar P, Sharma H, Singh A, Pandey SN, Chandra P. Correlation between exosomes and Neuro-inflammation in varied mind issues. Singapore: Springer; 2024.

    Guide 

    Google Scholar
     

  • Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh-Hesary F, Ashique S. Position of flavonoids in persistent metabolic illnesses. Scrivener Publishing; 2024.

  • Sharma H, Tyagi SJ, Chandra P, Verma A, Kumar P, Ashique S, Hussain A. Exosomes based mostly drug supply methods for mind issues. Singapore: Springer; 2024.


    Google Scholar
     

  • Liu Y, Zhu M, Meng M, Wang Q, Wang Y, Lei Y, Zhang Y, Weng L, Chen X. A dual-responsive hyaluronic acid nanocomposite hydrogel drug supply system for overcoming a number of drug resistance. Chin Chem Lett. 2023;34(1):107583.

    Article 
    CAS 

    Google Scholar
     

  • Zhu H, Yu J, Ye J, Wu Y, Pan J, Li Y, Chen C, Zheng L, Liu G, Chu C. Nanoparticle-mediated corneal neovascularization therapies: towards new technology of drug supply techniques. Chin Chem Lett. 2023;34(3):107648.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Chen S, Xia X, Du Y, Wei Y, Yang W, Zhang Y, Track Y, Lei T, Huang Q, Gao H. Lysosome-Focusing on protein degradation by means of endocytosis pathway triggered by polyvalent Nano-Chimera for AD remedy. Adv Mater. 2025;37(5):e2411061.

    Article 
    PubMed 

    Google Scholar
     

  • Zare D, Rajizadeh MA, Maneshian M, Jonaidi H, Sheibani V, Asadi-Shekaari M, Yousefi M, Esmaeilpour Ok. Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive efficiency and synaptic plasticity impairments in animal mannequin of Alzheimer’s illnesses. Psychopharmacology. 2021;238(6):1645–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan XS, Yang ZJ, Jia JX, Track W, Fang X, Cai ZP, Huo DS, Wang H. Protecting mechanism of testosterone on cognitive impairment in a rat mannequin of Alzheimer’s illness. Neural Regen Res. 2019;14(4):649–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapoor KS, Harris Ok, Arian KA, Ma L, Schueng Zancanela B, Church KA, McAndrews KM, Kalluri R. Excessive throughput and speedy isolation of extracellular vesicles and exosomes with purity utilizing dimension exclusion liquid chromatography. Bioact Mater. 2024;40:683–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takov Ok, Yellon DM, Davidson SM. Comparability of small extracellular vesicles remoted from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and useful potential. J Extracell Vesicles. 2019;8(1):1560809.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D. Position of Exosomal proteins in most cancers prognosis. Mol Most cancers. 2017;16(1):145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandes M, Lopes I, Magalhaes L, Sarria MP, Machado R, Sousa JC, Botelho C, Teixeira J, Gomes AC. Novel idea of exosome-like liposomes for the remedy of Alzheimer’s illness. J Management Launch. 2021;336:130–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and supply automobiles throughout organic membranes: present views and future challenges. Acta Pharm Sin B. 2016;6(4):287–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, Lee YK. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic purposes. J Management Launch. 2023;353:1127–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukherjee A, Bisht B, Dutta S, Paul MK. Present advances in using exosomes, liposomes, and bioengineered hybrid nanovesicles in most cancers detection and remedy. Acta Pharmacol Sin. 2022;43(11):2759–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YJ, Wu JY, Liu J, Xu W, Qiu X, Huang S, Hu XB, Xiang DX. Synthetic exosomes for translational nanomedicine. J Nanobiotechnol. 2021;19(1):242.

    Article 

    Google Scholar
     

  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of personalised biogenic drug supply techniques. ACS Nano. 2018;12(7):6830–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv Q, Cheng L, Lu Y, Zhang X, Wang Y, Deng J, Zhou J, Liu B, Liu J. Thermosensitive Exosome-Liposome hybrid Nanoparticle-Mediated chemoimmunotherapy for improved remedy of metastatic peritoneal Most cancers. Adv Sci (Weinh). 2020;7(18):2000515.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebreton V, Kaeokhamloed N, Vasylaki A, Hilairet G, Mellinger A, Béjaud J, Saulnier P, Lagarce F, Gattacceca F, Legeay S, Roger E. Pharmacokinetics of intact lipid nanocapsules utilizing new quantitative FRET approach. J Managed Launch. 2022;351:681–91.

    Article 
    CAS 

    Google Scholar
     

  • Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Utility of Förster resonance vitality switch (FRET) approach to elucidate intracellular and in vivo biofate of nanomedicines. Adv Drug Del Rev. 2019;143:177–205.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Pan Y, Li Y, Tang C, Xu Z, Li C, Xu F, Mai Y. Hybrid polymer vesicles: controllable Preparation and potential purposes. Biomacromolecules. 2023;24(9):3929–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for most cancers therapeutics: liposomes, exosomes and hybrid exosomes. Most cancers Lett. 2023;565:216220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective endocytic uptake of focused liposomes happens inside a slim vary of liposome diameters. ACS Appl Mater Interfaces. 2023;15(43):49988–50001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandek TB, van der Koog L, Nagelkerke A. A comparability of mobile uptake mechanisms, supply efficacy, and intracellular destiny between liposomes and extracellular vesicles. Adv Healthc Mater. 2023;12(25):e2300319.

    Article 
    PubMed 

    Google Scholar
     

  • Samson LD. A goal to suppress irritation. Science. 2018;362(6416):748–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurtley SM. A microglia sort related to AD. Science. 2017;357(6347):160–1.

    Article 
    PubMed 

    Google Scholar
     

  • Ji Z, Liu C, Zhao W, Soto C, Zhou X. Multi-scale modeling for systematically Understanding the important thing roles of microglia in AD improvement. Comput Biol Med. 2021;133:104374.

    Article 
    PubMed 

    Google Scholar
     

  • Sayed FA, Kodama L, Fan L, Carling GK, Udeochu JC, Le D, Li Q, Zhou L, Wong MY, Horowitz R, et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial States through AKT hyperactivation. Sci Transl Med. 2021;13(622):eabe3947.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leng F, Edison P. Neuroinflammation and microglial activation in alzheimer illness: the place will we go from right here? Nat Rev Neurol. 2021;17(3):157–72.

    Article 
    PubMed 

    Google Scholar
     

  • Wei Y, Solar Y, Wei J, Qiu X, Meng F, Storm G, Zhong Z. Selective transferrin coating as a facile technique to fabricate BBB-permeable and focused vesicles for potent RNAi remedy of mind metastatic breast most cancers in vivo. J Managed Launch. 2021;337:521–9.

    Article 
    CAS 

    Google Scholar
     

  • Shimbo T, Kawachi M, Saga Ok, Fujita H, Yamazaki T, Tamai Ok, Kaneda Y. Improvement of a transferrin receptor-targeting HVJ-E vector. Biochem Biophys Res Commun. 2007;364(3):423–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A. Transferrin-Copper Nanocluster-Doxorubicin nanoparticles as focused theranostic Most cancers nanodrug. ACS Appl Mater Interfaces. 2018;10(4):3282–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan Ok, Zhou M, Yan X. Questions on horse spleen ferritin crossing the blood mind barrier through mouse transferrin receptor 1. Protein Cell. 2017;8(11):788–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomatis F, Rosa S, Simões S, Barão M, Jesus C, Novo J, Barth E, Marz M, Ferreira L. Engineering extracellular vesicles to transiently permeabilize the blood–mind barrier. J Nanobiotechnol. 2024;22(1):747.

    Article 
    CAS 

    Google Scholar
     

  • Liu D, Ji Q, Cheng Y, Liu M, Zhang B, Mei Q, Huan M, Zhou S. Cyclosporine A loaded mind concentrating on nanoparticle to deal with cerebral ischemia/reperfusion damage in mice. J Nanobiotechnol. 2022;20(1):256.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Y, Zhou W, Chen X, Wang Q, Li C, Chen Q, Zhang Y, Lu Y, Ding X, Jiang C. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and focused chemotherapy of pancreatic most cancers. Acta Pharm Sin B. 2020;10(8):1563–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kafa H, Wang JT, Rubio N, Klippstein R, Costa PM, Hassan HA, Sosabowski JK, Bansal SS, Preston JE, Abbott NJ, Al-Jamal KT. Translocation of LRP1 focused carbon nanotubes of various diameters throughout the blood-brain barrier in vitro and in vivo. J Management Launch. 2016;225:217–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu M, Soliman MG, Solar X, Pelaz B, Feliu N, Parak WJ, Liu S. How entanglement of various physicochemical properties complicates the prediction of in vitro and in vivo interactions of gold nanoparticles. ACS Nano. 2018;12(10):10104–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonali, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B, Singh S, Singh U, Sprint D, Pandey BL, Muthu MS. Transferrin liposomes of docetaxel for brain-targeted most cancers purposes: formulation and mind theranostics. Drug Deliv. 2016;23(4):1261–71.

    Article 

    Google Scholar
     

  • Gopalan D, Pandey A, Udupa N, Mutalik S. Receptor particular, stimuli responsive and subcellular focused approaches for efficient remedy of Alzheimer: function of floor engineered nanocarriers. J Management Launch. 2020;319:183–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan M, Solar S, Di X, Zhao M, Lu F, Zhang Z, Li Y. Icariin improves studying and reminiscence perform in Abeta(1–42)-induced AD mice by means of regulation of the BDNF-TrkappaB signaling pathway. J Ethnopharmacol. 2024;318(Pt B):117029.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay M, Jucker M. Induction of Tau pathology by intracerebral infusion of amyloid-beta -containing mind extract and by amyloid-beta deposition in APP X Tau Transgenic mice. Am J Pathol. 2007;171(6):2012–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hour FQ, Moghadam AJ, Shakeri-Zadeh A, Bakhtiyari M, Shabani R, Mehdizadeh M. Magnetic focused supply of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat fashions. J Management Launch. 2020;321:430–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Du Y, Zhang Ok, Liang Z, Li J, Yu H, Ren R, Feng J, Jin Z, Li F, et al. Tau-Focused multifunctional nanocomposite for combinational remedy of Alzheimer’s illness. ACS Nano. 2018;12(2):1321–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Y, Huang W, Wang Y, Zhang R, Hou L, Xu J, Qiu Z, Xie Q, Chen H, Zhang Y, Wang H. Bis(9)-(-)-Meptazinol, a novel dual-binding ache inhibitor, rescues cognitive deficits and pathological modifications in APP/PS1 Transgenic mice. Transl Neurodegener. 2018;7:21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi YY, Heng X, Yao ZY, Qu SY, Ge PY, Zhao X, Ni SJ, Guo R, Yang NY, Zhang QC, Zhu HX. Involvement of Huanglian Jiedu Decoction on microglia with irregular sphingolipid metabolism in Alzheimer’s illness. Drug Des Devel Ther. 2022;16:931–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng J, Pei H, Wu H, Chen W, Du R, He Z. Palmatine attenuates LPS-induced neuroinflammation by means of the PI3K/Akt/NF-kappaB pathway. J Biochem Mol Toxicol. 2024;38(1):e23544.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Shen B, Pan X, Liu C, Wang Y, Chen X, Wang T, Chen G, Chen J. Palmatine ameliorated lipopolysaccharide-induced sepsis-associated encephalopathy mice by regulating the microbiota-gut-brain axis. Phytomedicine. 2024;124:155307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Ok, Yin J, Chen J, Ma J, Si H, Xia D. Inhibition of irritation by Berberine: molecular mechanism and community Pharmacology evaluation. Phytomedicine. 2024;128:155258.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Ok, Yao Y, Wang Ok, Shao F, Zhu Z, Track Y, Zhou Z, Jiang D, Lan X, Qin C. Berberin sustained-release nanoparticles had been enriched in infarcted rat myocardium and resolved irritation. J Nanobiotechnol. 2023;21(1):33.

    Article 
    CAS 

    Google Scholar
     

  • Xia Y, Wang X, Lin S, Dong TTX, Tsim KWK. Berberine and palmatine, appearing as allosteric potential ligands of alpha7 nAChR, synergistically regulate irritation and phagocytosis of microglial cells. FASEB J. 2024;38(19):e70094.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding MR, Qu YJ, Hu B, An HM. Sign pathways within the remedy of Alzheimer’s illness with conventional Chinese language medication. Biomed Pharmacother. 2022;152:113208.

    Article 
    PubMed 

    Google Scholar
     

  • Durairajan SSK, Iyaswamy A, Shetty SG, Kammella AK, Malampati S, Shang W, Yang C, Track J, Chung S, Huang J, et al. A modified formulation of Huanglian-Jie-Du-Tang reduces reminiscence impairments and beta-amyloid plaques in a triple Transgenic mouse mannequin of Alzheimer’s illness. Sci Rep. 2017;7(1):6238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyaswamy A, Wang X, Krishnamoorthi S, Kaliamoorthy V, Sreenivasmurthy SG, Kumar Durairajan SS, Track JX, Tong BC, Zhu Z, Su CF, et al. Theranostic F-SLOH mitigates Alzheimer’s illness pathology involving TFEB and ameliorates cognitive capabilities in Alzheimer’s illness fashions. Redox Biol. 2022;51:102280.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starling S. Alzheimer illness: Blood-derived Abeta induces AD pathology. Nat Rev Neurol. 2018;14(1):2.

    PubMed 

    Google Scholar
     

  • Bettcher BM, Tansey MG, Dorothee G, Heneka MT. Peripheral and central immune system crosstalk in alzheimer illness – a analysis prospectus. Nat Rev Neurol. 2021;17(11):689–701.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang F, Zhao Ok, Zhang X, Zhang J, Xu B. ATP induces disruption of tight junction proteins through IL-1 Beta-Dependent MMP-9 activation of human Blood-Mind barrier in vitro. Neural Plast. 2016;2016:8928530.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botella Lucena P, Heneka MT. Inflammatory features of Alzheimer’s illness. Acta Neuropathol. 2024;148(1):31.

    Article 
    PubMed 

    Google Scholar
     

  • Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH et al. Neuroinflammation in alzheimer illness. Nat Rev Immunol. 2024.

  • Xu C, Wu J, Wu Y, Ren Z, Yao Y, Chen G, Fang EF, Noh JH, Liu YU, Wei L, et al. TNF-alpha-dependent neuronal necroptosis regulated in Alzheimer’s illness by coordination of RIPK1-p62 advanced with autophagic UVRAG. Theranostics. 2021;11(19):9452–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asby D, Boche D, Allan S, Love S, Miners JS. Systemic an infection exacerbates cerebrovascular dysfunction in Alzheimer’s illness. Mind. 2021;144(6):1869–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s illness. J Cell Biol. 2018;217(2):459–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao T, Yu X, Yang L, Duan X. Palmatine treats urticaria by decreasing irritation and rising autophagy. Entrance Immunol. 2023;14:1268467.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin X, Zhang N, Berberine. Pathways to guard neurons. Phytother Res. 2018;32(8):1501–10.

    Article 
    PubMed 

    Google Scholar
     

  • Liu T, Zhang L, Joo D, Solar SC. NF-kappaB signaling in irritation. Sign Transduct Goal Ther. 2017;2:17023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lingappan Ok. NF-kappaB in oxidative stress. Curr Opin Toxicol. 2018;7:81–6.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma H, Chandra P, Challenges, Prospects F. A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s illness. Int J Pharm Investig. 2023;14(1):117–26.

    Article 

    Google Scholar
     

  • Solar SC. The non-canonical NF-kappaB pathway in immunity and irritation. Nat Rev Immunol. 2017;17(9):545–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao M, Day AM, Galler M, Latimer HR, Byrne DP, Foy TW, Dwyer E, Bennett E, Palmer J, Morgan BA, et al. A peroxiredoxin-P38 MAPK scaffold will increase MAPK exercise by MAP3K-independent mechanisms. Mol Cell. 2023;83(17):3140–e31543147.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng Ok, Li E, Eser R, Piergies A, Sit R, Tan M, Neff N, Li SH, Rodriguez RD, Suemoto CK, et al. Molecular characterization of selectively susceptible neurons in Alzheimer’s illness. Nat Neurosci. 2021;24(2):276–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard R, Kales HC. New therapies for Alzheimer’s illness. BMJ. 2023;382:1852.

    Article 
    PubMed 

    Google Scholar
     

  • Henstridge CM, Hyman BT, Spires-Jones TL. Past the neuron-cellular interactions early in alzheimer illness pathogenesis. Nat Rev Neurosci. 2019;20(2):94–108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Ge P, Lei S, Guo S, Zhou P, Zhao L, Qi Y, Wei X, Wu W, Wang N, et al. An Exosome-Based mostly therapeutic technique concentrating on neuroinflammation in Alzheimer’s illness with Berberine and palmatine. Drug Des Devel Ther. 2023;17:2401–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in alzheimer illness. Nat Rev Neurol. 2023;19(1):19–38.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou X, Miao Y, Wang Y, He S, Guo L, Mao J, Chen M, Yang Y, Zhang X, Gan Y. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles improve SiRNA supply by tumour-homing and intracellular freeway transportation. J Extracell Vesicles. 2022;11(3):e12198.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, He D, Guo Q, Zhang Z, Ru D, Wang L, Gong Ok, Liu F, Duan Y, Li H. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian most cancers. J Nanobiotechnol. 2022;20(1):50.

    Article 
    CAS 

    Google Scholar
     

  • Kawabata H. Transferrin and transferrin receptors replace. Free Radic Biol Med. 2019;133:46–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bassil R, Shields Ok, Granger Ok, Zein I, Ng S, Chih B. Improved modeling of human AD with an automatic culturing platform for iPSC neurons, astrocytes and microglia. Nat Commun. 2021;12(1):5220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Track Y, Li Z, He T, Qu M, Jiang L, Li W, Shi X, Pan J, Zhang L, Wang Y, et al. M2 microglia-derived exosomes shield the mouse mind from ischemia-reperfusion damage through Exosomal miR-124. Theranostics. 2019;9(10):2910–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, et al. Reassessment Exosome Composition Cell. 2019;177(2):428–e445418.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao T, Zhang W, Jiao B, Pan CZ, Liu X, Shen L. The function of exosomes within the pathogenesis of Alzheimer’ illness. Transl Neurodegener. 2017;6:3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui J, Wang X, Li J, Zhu A, Du Y, Zeng W, Guo Y, Di L, Wang R. Immune exosomes loading Self-Assembled nanomicelles traverse the Blood-Mind barrier for Chemo-immunotherapy towards glioblastoma. ACS Nano. 2023.

  • Sharma H, Rani T, Khan S. An perception into neuropathic ache: A systemic and Up-to-date evaluation. Int J Pharm Sci. 2023;14(2):607–21.

    CAS 

    Google Scholar
     

  • Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A scientific evaluation. Phytother Res. 2019;33(3):504–23.

    Article 
    PubMed 

    Google Scholar
     

  • Ekeuku SO, Pang KL, Chin KY. Palmatine as an agent towards metabolic syndrome and its associated problems: A evaluation. Drug Des Devel Ther. 2020;14:4963–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halagali P, Inamdar A, Singh J, Anand A, Sadhu P, Pathak R, Sharma H, Biswas D. Phytochemicals, natural extracts, and dietary dietary supplements for metabolic illness administration. Endocr Metab Immune Disord Drug Targets; 2024.

  • Wang Y, Pei H, Chen W, Du R, Li J, He Z. Palmatine protects PC12 cells and mice from Abeta25-35-Induced oxidative stress and neuroinflammation through the Nrf2/HO-1 pathway. Molecules. 2023; 28(24).

  • Cheng Z, Kang C, Che S, Su J, Solar Q, Ge T, Guo Y, Lv J, Solar Z, Yang W, et al. Berberine: A promising remedy for neurodegenerative illnesses. Entrance Pharmacol. 2022;13:845591.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbar M, Shabbir A, Rehman Ok, Akash MSH, Shah MA. Neuroprotective potential of Berberine in modulating Alzheimer’s illness through a number of signaling pathways. J Meals Biochem. 2021;45(10):e13936.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapoor DU, Sharma H, Maheshwari R, Pareek A, Gaur M, Prajapati BG, Castro GR, Thanawuth Ok, Suttiruengwong S, Sriamornsak P. Konjac Glucomannan: A complete evaluation of its extraction, well being advantages, and pharmaceutical purposes. Carbohydr Polym. 2024;339:122266.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cummings J. Anti-Amyloid monoclonal antibodies are transformative therapies that redefine Alzheimer’s illness therapeutics. Medicine. 2023;83(7):569–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gehlot P, Pathak R, Kumar S, Choudhary NK, Vyas VK. A evaluation on artificial inhibitors of dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) for the remedy of Alzheimer’s illness (AD). Bioorg Med Chem. 2024;113:117925.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandra P, Sharma H. Phosphodiesterase inhibitors for remedy of Alzheimer’s illness. Indian Medicine. 2024;61:7.


    Google Scholar
     

  • Sharma H, Chandra P, Verma A, Pandey S, Kumar P, Singh A. Therapeutic approaches of nutraceuticals within the prevention of Alzheimer’s illness. J Meals Biochem. 2023;46(12):e14426.


    Google Scholar
     

  • Zhu S, Stein Richard A, Yoshioka C, Lee C-H, Goehring A, McHaourab Hassane S, Gouaux E. Mechanism of NMDA receptor Inhibition and activation. Cell. 2016;165(3):704–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Tong Q, Ma SR, Zhao ZX, Pan LB, Cong L, Han P, Peng R, Yu H, Lin Y, et al. Oral Berberine improves mind dopa/dopamine ranges to ameliorate Parkinson’s illness by regulating intestine microbiota. Sign Transduct Goal Ther. 2021;6(1):77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet. 2022;400(10360):1363–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christoforidou E, Joilin G, Hafezparast M. Potential of activated microglia as a supply of dysregulated extracellular MicroRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J Neuroinflammation. 2020;17(1):135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Himanshu S, Monika Ok, Priyanka G, Sanakattula S, Ananya C, Sumel A, Radheshyam P. Position of MiRNAs in mind improvement. MicroRNA. 2024;13(2):96–109.

    Article 

    Google Scholar
     

  • Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in Parkinson’s illness. Neurobiol Dis. 2020;144:105028.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *