Migrasomes as intercellular messengers: potential within the pathological mechanism, prognosis and remedy of scientific ailments | Journal of Nanobiotechnology


  • Ma L, Li Y, Peng J, Wu D, Zhao X, Cui Y, et al. Discovery of the migrasome, an organelle mediating launch of cytoplasmic contents throughout cell migration. Cell Res. 2015;25(1):24–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang D, Jiang Z, Lu D, Wang X, Liang H, Zhang J, et al. Migrasomes present regional cues for organ morphogenesis throughout zebrafish gastrulation. Nat Cell Biol. 2019;21(8):966–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Li T, Yin S, Gao M, He H, Li Y, et al. Monocytes deposit migrasomes to advertise embryonic angiogenesis. Nat Cell Biol. 2022;24(12):1726–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao H, Jiang D, Hu X, Du W, Ji L, Yang Y, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control course of. Cell. 2021;184(11):2896–910.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu M, Zou Q, Huang R, Li Y, Xing X, Fang J, et al. Lateral switch of mRNA and protein by migrasomes modifies the recipient cells. Cell Res. 2021;31(2):237–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao H, Li X, Li Y, Guo Y, Hu X, Sho T, et al. Localized, extremely environment friendly secretion of signaling proteins by migrasomes. Cell Res. 2024;34(8):572–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, Ivanova O, et al. Built-in intra- and intercellular signaling data for multicellular omics evaluation. Mol Syst Biol. 2021;17(3): e9923.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein affiliation networks with elevated protection, supporting purposeful discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tkach M, Thery C. Communication by extracellular vesicles: the place we’re and the place we have to go. Cell. 2016;164(6):1226–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andaloussi ELS, Mager I, Breakefield XO, Wooden MJA. Extracellular vesicles: biology and rising therapeutic alternatives. Nat Rev Drug Discov. 2013;12(5):347–57.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang Y, Liu X, Ye J, Ma Y, Mao J, Feng D, et al. Migrasomes, a brand new mode of intercellular communication. Cell Commun Sign. 2023;21(1):105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Okay, Zhu Z, Jia R, Wang NA, Shi M, Wang Y, et al. CD151-enriched migrasomes mediate hepatocellular carcinoma invasion by conditioning most cancers cells and selling angiogenesis. J Exp Clin Most cancers Res. 2024;43(1):160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Peng J, Zhang Y, Zheng Okay, Chen Y, Liu L, et al. Pancreatic most cancers cell-derived migrasomes promote most cancers development by fostering an immunosuppressive tumor microenvironment. Most cancers Lett. 2024;605: 217289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Z, Wang M, Chen Y, Tang H, Tang Okay, Zhao M, et al. Glioblastoma-derived migrasomes promote migration and invasion by releasing PAK4 and LAMA4. Commun Biol. 2025;8(1):91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang N, Gao S, Zhang L. Chikungunya virus nsP1 induces migrasome formation. J Infect. 2022;85(5):e158–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv L, Zhang L. Identification of poxvirus inside migrasomes suggests a novel mode of mpox virus unfold. J Infect. 2023;87(2):160–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu T, Li D, Luan J, Zhang L. Dasabuvir: an FDA-approved drug inhibiting poxvirus transmission by focusing on each migrasome formation and extracellular enveloped virus manufacturing. J Infect. 2025;90(2): 106403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar P, Li Y, Yu W, Chen J, Wan P, Wang Z, et al. Low-intensity pulsed ultrasound improves myocardial ischaemia–reperfusion damage by way of migrasome-mediated mitocytosis. Clin Transl Med. 2024;14(7): e1749.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu M, Li T, Ma X, Liu S, Li C, Huang Z, et al. Macrophage lineage cells-derived migrasomes activate complement-dependent blood-brain barrier harm in cerebral amyloid angiopathy mouse mannequin. Nat Commun. 2023;14(1):3945.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Yang S, Li H, Zhang Y, Feng L, Zhang C, et al. TSPAN4-positive migrasome derived from retinal pigmented epithelium cells contributes to the event of proliferative vitreoretinopathy. J Nanobiotechnol. 2022;20(1):519.

    Article 
    CAS 

    Google Scholar
     

  • Wan S, Wang X, Chen W, Xu Z, Zhao J, Huang W, et al. Polystyrene nanoplastics activate autophagy and suppress trophoblast cell migration/invasion and migrasome formation to induce miscarriage. ACS Nano. 2024;18(4):3733–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Li S, Rong W, Zeng C, Zhu X, Chen Q, et al. Podocyte-released migrasomes in urine function an indicator for early podocyte damage. Kidney Dis (Basel). 2020;6(6):422–33.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Li Y, Li B, Hu D, Dong Z, Lu F. Migrasomes from adipose derived stem cells enrich CXCL12 to recruit stem cells by way of CXCR4/RhoA for a constructive suggestions loop mediating gentle tissue regeneration. J Nanobiotechnol. 2024;22(1):219.

    Article 
    CAS 

    Google Scholar
     

  • Taylor AC, Robbins E. Observations on microextensions from the floor of remoted vertebrate cells. Dev Biol. 1963;6:660–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SY, Choi SH, Kim Y, Ahn HS, Ko YG, Kim Okay, et al. Migrasomal autophagosomes relieve endoplasmic reticulum stress in glioblastoma cells. BMC Biol. 2024;22(1):23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Zucker B, Zhang S, Elias S, Zhu Y, Chen H, et al. Migrasome formation is mediated by meeting of micron-scale tetraspanin macrodomains. Nat Cell Biol. 2019;21(8):991–1002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Yang Z, Zhou L, Yang M, He S. The versatile roles of testrapanins in most cancers from intracellular signaling to cell-cell communication: cell membrane proteins with out ligands. Cell Biosci. 2023;13(1):59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Xu Y, Ding T, Zu Y, Yang C, Yu L. Pairing of integrins with ECM proteins determines migrasome formation. Cell Res. 2017;27(11):1397–400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemler ME. Focusing on of tetraspanin proteins–potential advantages and methods. Nat Rev Drug Discov. 2008;7(9):747–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinstein E. The complexity of tetraspanins. Biochem Soc Trans. 2011;39(2):501–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Lei Y, Zheng J, Peng J, Li Y, Yu L, et al. Identification of markers for migrasome detection. Cell Discov. 2019;5:27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang H, Ma X, Zhang Y, Liu Y, Liu N, Zhang W, et al. The formation of migrasomes is initiated by the meeting of sphingomyelin synthase 2 foci at the forefront of migrating cells. Nat Cell Biol. 2023;25(8):1173–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding T, Ji J, Zhang W, Liu Y, Liu B, Han Y, et al. The phosphatidylinositol (4,5)-bisphosphate-Rab35 axis regulates migrasome formation. Cell Res. 2023;33(8):617–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dharan R, Huang Y, Cheppali SK, Goren S, Shendrik P, Wang W, et al. Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes. Nat Commun. 2023;14(1):1037.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wen Y, Li Y, Tan X, Gao S, Fan P, et al. Rab10-CAV1 mediated intraluminal vesicle transport to migrasomes. Proc Natl Acad Sci USA. 2024;121(30): e1975700175.

    Article 

    Google Scholar
     

  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and illness: past discovery and growth. Cell. 2019;176(6):1248–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballmer-Hofer Okay. Vascular endothelial progress issue, from fundamental analysis to scientific purposes. Int J Mol Sci. 2018;19(12):3750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribatti D. The invention of the elemental position of VEGF within the growth of the vascular system. Mech Dev. 2019;160: 103579.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majesky MW. Vascular growth. Arterioscler Thromb Vasc Biol. 2018;38(3):e17-24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian BZ, Pollard JW. Macrophage range enhances tumor development and metastasis. Cell. 2010;141(1):39–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borikun T, Mushii O, Pavlova A, Burda T, Zadvornyi T. Tumor microenvironment-associated miR-7-5p, miR-19a-3p, and miR-23b-3p expression in prostate most cancers with totally different development danger. Exp Oncol. 2024;45(4):432–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng Okay, Bai Y, Zhu Q, Hu B, Xu Y. Focusing on VEGF-neuropilin interactions: a promising antitumor technique. Drug Discov Immediately. 2019;24(2):656–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melentijevic I, Toth ML, Arnold ML, Guasp RJ, Harinath G, Nguyen KC, et al. C. elegans neurons jettison protein aggregates and mitochondria beneath neurotoxic stress. Nature. 2017;542(7641):367–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayakawa Okay, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al. Switch of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torralba D, Baixauli F, Sanchez-Madrid F. Mitochondria know no boundaries: mechanisms and capabilities of intercellular mitochondrial switch. Entrance Cell Dev Biol. 2016;4:107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Ye J, Peng Y, Ma W, Chen H, Solar H, et al. CKLF induces microglial activation by way of triggering faulty mitophagy and mitochondrial dysfunction. Autophagy. 2024;20(3):590–613.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Cao Y, Wan H, Memetimin A, Cao Y, Li L, et al. A mitophagy sensor PPTC7 controls BNIP3 and NIX degradation to manage mitochondrial mass. Mol Cell. 2024;84(2):327–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145(3638):1310–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macfarlane RG. An enzyme cascade within the blood clotting mechanism, and its operate as a biochemical amplifier. Nature. 1964;202:498–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang D, Jiao L, Li Q, Xie R, Jia H, Wang S, et al. Neutrophil-derived migrasomes are a necessary a part of the coagulation system. Nat Cell Biol. 2024;26(7):1110–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin Y, Yang J, Liang C, Liu J, Deng Z, Yan B, et al. Pan-cancer evaluation identifies migrasome-related genes as a possible immunotherapeutic goal: a bulk omics analysis and single cell sequencing validation. Entrance Immunol. 2022;13: 994828.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattiola I, Mantovani A, Locati M. The tetraspan MS4A household in homeostasis, immunity, and illness. Traits Immunol. 2021;42(9):764–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattiola I, Tomay F, De Pizzol M, Silva-Gomes R, Savino B, Gulic T, et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat Immunol. 2019;20(8):1012–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Cao Okay, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Most cancers Lett. 2023;571: 216345.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu C, Chen P, Tian H, Yang Y, Huang Z, Yan H, et al. Focusing on preliminary tumour-osteoclast spatiotemporal interplay to stop bone metastasis. Nat Nanotechnol. 2024;19(7):1044–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Z, Zhou L, Chen Z, Good EC, Huang C. Stress administration by autophagy: implications for chemoresistance. Int J Most cancers. 2016;139(1):23–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knizhnik AV, Roos WP, Nikolova T, Quiros S, Tomaszowski KH, Christmann M, et al. Survival and loss of life methods in glioma cells: autophagy, senescence and apoptosis triggered by a single kind of temozolomide-induced DNA harm. PLoS ONE. 2013;8(1): e55665.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Burgess DJ. Nanomedicine-based drug supply in the direction of tumor organic and immunological microenvironment. Acta Pharm Sin B. 2020;10(11):2110–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai Q, Bertleff-Zieschang N, Braunger JA, Bjornmalm M, Cortez-Jugo C, Caruso F. Particle focusing on in complicated organic media. Adv Healthc Mater. 2018;7(1).

  • Chen E, Han S, Music B, Xu L, Yuan H, Liang M, et al. Mechanism investigation of hyaluronidase-combined multistage nanoparticles for stable tumor penetration and antitumor impact. Int J Nanomed. 2020;15:6311–24.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Pan H, Luo Y, Yin T, Zhang B, Liao J, et al. Nanoengineered CAR-T biohybrids for stable tumor immunotherapy with microenvironment photothermal-remodeling technique. Small. 2021;17(14): e2007494.

    Article 
    PubMed 

    Google Scholar
     

  • Waknine-Grinberg JH, Even-Chen S, Avichzer J, Turjeman Okay, Bentura-Marciano A, Haynes RK, et al. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute signs of experimental cerebral malaria. PLoS ONE. 2013;8(8): e72722.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrich-Noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, et al. The blood–mind barrier and past: nano-based neuropharmacology and the position of extracellular matrix. Nanomedicine-UK. 2019;17:359–79.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Y, Ren J, Fan S, Wu P, Cong W, Lin Y, et al. Nanoparticulates cut back tumor cell migration by affinity interactions with extracellular migrasomes and retraction fibers. Nanoscale Horiz. 2022;7(7):779–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sattentau Q. Avoiding the void: cell-to-cell unfold of human viruses. Nat Rev Microbiol. 2008;6(11):815–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhu Z, Li Y, Yang M, Hu Q. Migrasomes launched by HSV-2-infected cells function a conveyance for virus unfold. Virol Sin. 2023;38(4):643–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao W, Tang X, Zhang L. Virus-containing migrasomes allow poxviruses to evade tecovirimat/ST-246 remedy. J Infect. 2024;88(2):203–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koupenova M, Corkrey HA, Vitseva O, Tanriverdi Okay, Somasundaran M, Liu P, et al. SARS-CoV-2 initiates programmed cell loss of life in platelets. Circ Res. 2021;129(6):631–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Coronary heart illness and stroke statistics-2022 replace: a report from the American Coronary heart Affiliation. Circulation. 2022;145(8):e153-639.

    Article 
    PubMed 

    Google Scholar
     

  • Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med. 2017;376(21):2053–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Pointers for the administration of acute myocardial infarction in sufferers presenting with ST-segment elevation: The Process Drive for the administration of acute myocardial infarction in sufferers presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Coronary heart J. 2018;39(2):119–77.

    Article 
    PubMed 

    Google Scholar
     

  • Wang J, Zhou H. Mitochondrial high quality management mechanisms as molecular targets in cardiac ischemia–reperfusion damage. Acta Pharm Sin B. 2020;10(10):1866–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolas-Avila JA, Lechuga-Vieco AV, Esteban-Martinez L, Sanchez-Diaz M, Diaz-Garcia E, Santiago DJ, et al. A community of macrophages helps mitochondrial homeostasis within the coronary heart. Cell. 2020;183(1):94–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 controls mitochondrial metabolism and protects coronary heart operate in myocardial infarction. Circulation. 2022;145(15):1140–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen J, Zhang JH, Xiao H, Wu JM, He KM, Lv ZZ, et al. Mitochondria are transported alongside microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Dying Dis. 2018;9(2):81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Lang Y, Qi B, Li T. TSPAN4 and migrasomes in atherosclerosis regression correlated to myocardial infarction and pan-cancer development. Cell Adh Migr. 2023;17(1):14–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gagat M, Zielinska W, Mikolajczyk Okay, Zabrzynski J, Krajewski A, Klimaszewska-Wisniewska A, et al. CRISPR-based activation of endogenous expression of TPM1 inhibits inflammatory response of main human coronary artery endothelial and clean muscle cells induced by recombinant human tumor necrosis issue alpha. Entrance Cell Dev Biol. 2021;9: 668032.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang YJ, Yang Okay, Wen Y, Wang P, Hu Y, Lai Y, et al. Screening and prognosis of heart problems utilizing synthetic intelligence-enabled cardiac magnetic resonance imaging. Nat Med. 2024;30(5):1471–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayes-Genis A, Docherty KF, Petrie MC, Januzzi JL, Mueller C, Anderson L, et al. Sensible algorithms for early prognosis of coronary heart failure and coronary heart stress utilizing NT-proBNP: a scientific consensus assertion from the Coronary heart Failure Affiliation of the ESC. Eur J Coronary heart Fail. 2023;25(11):1891–8.

    Article 
    PubMed 

    Google Scholar
     

  • Jansen F, Nickenig G, Werner N. Extracellular vesicles in heart problems: potential purposes in prognosis, prognosis, and epidemiology. Circ Res. 2017;120(10):1649–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brush JJ, Sherbino J, Norman GR. Diagnostic reasoning in cardiovascular medication. BMJ. 2022;376: e64389.


    Google Scholar
     

  • Foster RR, Saleem MA, Mathieson PW, Bates DO, Harper SJ. Vascular endothelial progress issue and nephrin work together and cut back apoptosis in human podocytes. Am J Physiol Renal Physiol. 2005;288(1):F48-57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petermann A, Floege J. Podocyte harm leading to podocyturia: a possible diagnostic marker to evaluate glomerular illness exercise. Nephron Clin Pract. 2007;106(2):c61–6.

    Article 
    PubMed 

    Google Scholar
     

  • Pagtalunan ME, Miller PL, Leaping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular damage in kind II diabetes. J Clin Make investments. 1997;99(2):342–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steffes MW, Schmidt D, McCrery R, Basgen JM. Glomerular cell quantity in regular topics and in kind 1 diabetic sufferers. Kidney Int. 2001;59(6):2104–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivanova EA, Arcolino FO, Elmonem MA, Rastaldi MP, Giardino L, Cornelissen EM, et al. Cystinosin deficiency causes podocyte harm and loss related to elevated cell motility. Kidney Int. 2016;89(5):1037–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Widmeier E, Tan W, Airik M, Hildebrandt F. A small molecule screening to detect potential therapeutic targets in human podocytes. Am J Physiol Renal Physiol. 2017;312(1):F157–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison EE, Bailey MA, Expensive JW. Renal extracellular vesicles: from physiology to scientific software. J Physiol. 2016;594(20):5735–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasian N, Herbert KE, Pawluczyk I, Burton JO, Bevington A. Vesicles bearing presents: the purposeful significance of micro-RNA switch in extracellular vesicles in power kidney illness. Am J Physiol Renal Physiol. 2018;315(5):F1430–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bikbov B, Purcell C, Levey AS, Smith M, Abdoli A, Abebe M,et al. International, regional, and nationwide burden of power kidney illness, 1990–2017: a scientific evaluation for the International Burden of Illness Examine 2017. Lancet. 2020;395(10225):709–33.

  • Erdbrugger U, Le TH. Extracellular vesicles in renal ailments: greater than novel biomarkers? J Am Soc Nephrol. 2016;27(1):12–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, Tapparo M, et al. The consequences of glomerular and tubular renal progenitors and derived extracellular vesicles on restoration from acute kidney damage. Stem Cell Res Ther. 2017;8(1):24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burbano C, Gomez-Puerta JA, Munoz-Vahos C, Vanegas-Garcia A, Rojas M, Vasquez G, et al. HMGB1(+) microparticles current in urine are hallmarks of nephritis in sufferers with systemic lupus erythematosus. Eur J Immunol. 2019;49(2):323–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chirackal RS, Jayachandran M, Wang X, Edeh S, Haskic Z, Perinpam M, et al. Urinary extracellular vesicle-associated MCP-1 and NGAL derived from particular nephron segments differ between calcium oxalate stone formers and controls. Am J Physiol Renal Physiol. 2019;317(6):F1475–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronco P, Beck L, Debiec H, Fervenza FC, Hou FF, Jha V, et al. Membranous nephropathy. Nat Rev Dis Primers. 2021;7(1):69.

    Article 
    PubMed 

    Google Scholar
     

  • Wang B, Fu YQ, Xie LJ, Cao JY, Yang M, Li M, et al. Measurement of urinary exosomal phospholipase A2 receptor is a delicate technique for prognosis of PLA2R-associated membranous nephropathy. Clin Kidney J. 2024;17(1): d191.

    Article 

    Google Scholar
     

  • Pattrapornpisut P, Kulasingam V, Reich HN. Interpretation and scientific worth of serum anti-PLA2R-antibody testing. J Appl Lab Med. 2021;6(3):799–803.

    Article 
    PubMed 

    Google Scholar
     

  • Yang R, Zhang H, Chen S, Lou Okay, Zhou M, Zhang M, et al. Quantification of urinary podocyte-derived migrasomes for the prognosis of kidney illness. J Extracell Vesicles. 2024;13(6): e12460.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babelova A, Jansen F, Sander Okay, Lohn M, Schafer L, Fork C, et al. Activation of Rac-1 and RhoA contributes to podocyte damage in power kidney illness. PLoS ONE. 2013;8(11): e80328.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robins R, Baldwin C, Aoudjit L, Cote JF, Gupta IR, Takano T. Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int. 2017;92(2):349–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, et al. ARHGDIA mutations trigger nephrotic syndrome by way of faulty RHO GTPase signaling. J Clin Make investments. 2013;123(8):3243–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quenby S, Gallos ID, Dhillon-Smith RK, Podesek M, Stephenson MD, Fisher J, et al. Miscarriage issues: the epidemiological, bodily, psychological, and financial prices of early being pregnant loss. Lancet. 2021;397(10285):1658–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La X, Wang W, Zhang M, Liang L. Definition and a number of components of recurrent spontaneous abortion. Adv Exp Med Biol. 2021;1300:231–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahine L, Lathi R. Recurrent being pregnant loss: analysis and remedy. Obstet Gynecol Clin North Am. 2015;42(1):117–34.

    Article 
    PubMed 

    Google Scholar
     

  • Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, et al. Plasticenta: first proof of microplastics in human placenta. Environ Int. 2021;146: 106274.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Zhuan Q, Zhang L, Meng L, Fu X, Hou Y. Polystyrene microplastics induced feminine reproductive toxicity in mice. J Hazard Mater. 2022;424(Pt C): 127629.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X, Liu X, Hou Q, Wang Z. From pure setting to animal tissues: A evaluate of microplastics (nanoplastics) translocation and hazards research. Sci Complete Environ. 2023;855: 158686.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu P, Liu R, Lu D, Xu Y, Yang X, Jiang Z, et al. Chemical screening identifies ROCK1 as a regulator of migrasome formation. Cell Discov. 2020;6(1):51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torpy JM, Glass TJ, Glass RM. JAMA affected person web page. Retinopathy JAMA. 2005;293(1):128.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho HY, Chung SE, Kim JI, Park KH, Kim SK, Kang SW. Spontaneous reattachment of rhegmatogenous retinal detachment. Ophthalmology. 2007;114(3):581–6.

    Article 
    PubMed 

    Google Scholar
     

  • Jin HD, Russell JF. Self-limiting bilateral foveal detachment after coup-contrecoup damage. Ophthalmology. 2023;130(2):197.

    Article 
    PubMed 

    Google Scholar
     

  • Katzeff BS. Acute-onset floaters and flashes and danger for retinal detachment. JAMA. 2010;303(14):1369–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui JZ, Chiu A, Maberley D, Ma P, Samad A, Matsubara JA. Stage specificity of novel progress issue expression throughout growth of proliferative vitreoretinopathy. Eye (London). 2007;21(2):200–8.

    Article 
    CAS 

    Google Scholar
     

  • Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M. Inverse ranges of pigment epithelium-derived issue and vascular endothelial progress issue within the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. AM J Ophthalmol. 2002;133(6):851–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casaroli MR, Vilaro S. The position of fibronectin, laminin, vitronectin and their receptors on mobile adhesion in proliferative vitreoretinopathy. Make investments Ophthalmol Vis Sci. 1994;35(6):2791–803.


    Google Scholar
     

  • Moysidis SN, Thanos A, Vavvas DG. Mechanisms of irritation in proliferative vitreoretinopathy: from bench to bedside. Mediators Inflamm. 2012;2012: 815937.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaarniranta Okay, Xu H, Kauppinen A. Mechanistical retinal drug targets and challenges. Adv Drug Deliv Rev. 2018;126:177–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manai F, Smedowski A, Kaarniranta Okay, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal ailments: a brand new therapeutic paradigm. J Management Launch. 2024;365:448–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muller-Eberhard HJ. Complement. Annu Rev Biochem. 1975;44:697–724.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • West EE, Kolev M, Kemper C. Complement and the regulation of T cell responses. Annu Rev Immunol. 2018;36:309–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Z, Cheung NV. T cell participating bispecific antibody (T-BsAb): from expertise to therapeutics. Pharmacol Ther. 2018;182:161–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sergeeva A, Alatrash G, He H, Ruisaard Okay, Lu S, Wygant J, et al. An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity towards acute myeloid leukemia progenitor cells. Blood. 2011;117(16):4262–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a scientific evaluate. J Clin Neurol. 2011;7(1):1–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musiek ES, Holtzman DM. Three dimensions of the amyloid speculation: time, house and “wingmen.” Nat Neurosci. 2015;18(6):800–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito S, Yamamoto Y, Maki T, Hattori Y, Ito H, Mizuno Okay, et al. Taxifolin inhibits amyloid-beta oligomer formation and totally restores vascular integrity and reminiscence in cerebral amyloid angiopathy. Acta Neuropathol Commun. 2017;5(1):26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charidimou A, Martinez-Ramirez S, Reijmer YD, Oliveira-Filho J, Lauer A, Roongpiboonsopit D, et al. Complete magnetic resonance imaging burden of small vessel illness in cerebral amyloid angiopathy: an imaging-pathologic examine of idea validation. Jama Neurol. 2016;73(8):994–1001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grubman A, Choo XY, Chew G, Ouyang JF, Solar G, Croft NP, et al. Transcriptional signature in microglia related to Abeta plaque phagocytosis. Nat Commun. 2021;12(1):3015.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen SH, Tian DY, Shen YY, Cheng Y, Fan DY, Solar HL, et al. Amyloid-beta uptake by blood monocytes is lowered with ageing and Alzheimer’s illness. Transl Psychiatry. 2020;10(1):423.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogie J, Grajchen E, Wouters E, Corrales AG, Dierckx T, Vanherle S, et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia within the mind. J Exp Med. 2020;217(5):e20191660.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westendorp WF, Dames C, Nederkoorn PJ, Meisel A. Immunodepression, infections, and purposeful final result in ischemic stroke. Stroke. 2022;53(5):1438–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faura J, Bustamante A, Miro-Mur F, Montaner J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation. 2021;18(1):127.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suda S, Aoki J, Shimoyama T, Suzuki Okay, Sakamoto Y, Katano T, et al. Stroke-associated an infection independently predicts 3-month poor purposeful final result and mortality. J Neurol. 2018;265(2):370–5.

    Article 
    PubMed 

    Google Scholar
     

  • Bustamante A, Giralt D, Garcia-Berrocoso T, Rubiera M, Alvarez-Sabin J, Molina C, et al. The affect of post-stroke issues on in-hospital mortality is dependent upon stroke severity. Eur Stroke J. 2017;2(1):54–63.

    Article 
    PubMed 

    Google Scholar
     

  • Vermeij JD, Westendorp WF, Dippel DW, van de Beek D, Nederkoorn PJ. Antibiotic remedy for stopping infections in individuals with acute stroke. Cochrane Database Syst Rev. 2018;1(1):D8530.


    Google Scholar
     

  • Scott NA, Andrusaite A, Andersen P, Lawson M, Alcon-Giner C, Leclaire C, et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci Transl Med. 2018;10(464):eaa04755.

    Article 

    Google Scholar
     

  • Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal stem cells for neurological issues. Adv Sci (Weinh). 2021;8(7):2002944.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Deng Z, Zhao Y, Yuan R, Yang M, Zhang Y, et al. Mesenchymal stem cells regulate activation of microglia cells to enhance hippocampal damage of warmth stroke rats. J Therm Biol. 2021;101: 103081.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi L, Huang H, Lu X, Yan X, Jiang X, Xu R, et al. Impact of human umbilical cord-derived mesenchymal stem cells on lung harm in extreme COVID-19 sufferers: a randomized, double-blind, placebo-controlled section 2 trial. Sign Transduct Goal Ther. 2021;6(1):58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Su X, Lu P, Kang X, Hu M, Li C, et al. Bone marrow mesenchymal stem cell-derived dermcidin-containing migrasomes improve LC3-associated phagocytosis of pulmonary macrophages and defend towards post-stroke pneumonia. Adv Sci (Weinh). 2023;10(22): e2206432.

    Article 
    PubMed 

    Google Scholar
     

  • Schmidt-Pogoda A, Strecker JK, Liebmann M, Massoth C, Beuker C, Hansen U, et al. Dietary salt promotes ischemic mind damage and is related to parenchymal migrasome formation. PLoS ONE. 2018;13(12): e209871.

    Article 

    Google Scholar
     

  • Pardridge WM. A historic evaluate of mind drug supply. Pharmaceutics. 2022;14(6):1283.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawal SU, Patel BM, Patel MM. New drug supply methods developed for mind focusing on. Medication. 2022;82(7):749–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sissung TM, Figg WD. Stem cell clinics: danger of proliferation. Lancet Oncol. 2020;21(2):205–6.

    Article 
    PubMed 

    Google Scholar
     

  • Macia E, Boyden PA. Stem cell remedy is proarrhythmic. Circulation. 2009;119(13):1814–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steele AN, MacArthur JW, Woo YJ. Stem cell remedy: therapeutic or hype? Why stem cell supply doesn’t work. Circ Res. 2017;120(12):1868–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Bi X, Wu M, Chen X, Zhan W, Dong Z, et al. Adjusting the stiffness of a cell-free hydrogel system based mostly on tissue-specific extracellular matrix to optimize adipose tissue regeneration. Burns Trauma. 2023;11: d2.

    Article 

    Google Scholar
     

  • Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, et al. An replace on adipose-derived stem cells for regenerative medication: the place problem meets alternative. Adv Sci (Weinh). 2023;10(20): e2207334.

    Article 
    PubMed 

    Google Scholar
     

  • Coulange ZA, Velier M, Arcani R, Abellan LM, Simoncini S, Benyamine A, et al. Adipose tissue and adipose-tissue-derived cell therapies for the remedy of the face and palms of sufferers affected by systemic sclerosis. Biomedicines. 2023;11(2):348.

    Article 

    Google Scholar
     

  • Krastev TK, Schop SJ, Hommes J, Piatkowski A, van der Hulst R. Autologous fats switch to deal with fibrosis and scar-related situations: a scientific evaluate and meta-analysis. J Plast Reconstr Aesthet Surg. 2020;73(11):2033–48.

    Article 
    PubMed 

    Google Scholar
     

  • Kolle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, et al. Enrichment of autologous fats grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382(9898):1113–20.

    Article 
    PubMed 

    Google Scholar
     

  • Butala P, Hazen A, Szpalski C, Sultan SM, Coleman SR, Warren SM. Endogenous stem cell remedy enhances fats graft survival. Plast Reconstr Surg. 2012;130(2):293–306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girousse A, Gil-Ortega M, Bourlier V, Bergeaud C, Sastourne-Arrey Q, Moro C, et al. The discharge of adipose stromal cells from subcutaneous adipose tissue regulates ectopic intramuscular adipocyte deposition. Cell Rep. 2019;27(2):323–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majumdar R, Sixt M, Guardian CA. New paradigms within the institution and upkeep of gradients throughout directed cell migration. Curr Opin Cell Biol. 2014;30:33–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim Okay, Hyun YM, Lambert-Emo Okay, Capece T, Bae S, Miller R, et al. Neutrophil trails information influenza-specific CD8(+) T cells within the airways. Science. 2015;349(6252): a4352.

    Article 

    Google Scholar
     

  • Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast most cancers cell migration. Cell. 2012;151(7):1542–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Ge J, Huang C, Liu H, Jiang H. Software of mesenchymal stem cell remedy for growing older frailty: from mechanisms to therapeutics. Theranostics. 2021;11(12):5675–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medication: trying ahead. Entrance Bioeng Biotechnol. 2021;9: 837464.

    Article 
    PubMed 

    Google Scholar
     

  • Philips BJ, Grahovac TL, Valentin JE, Chung CW, Bliley JM, Pfeifer ME, et al. Prevalence of endogenous CD34+ adipose stem cells predicts human fats graft retention in a xenograft mannequin. Plast Reconstr Surg. 2013;132(4):845–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suga H, Eto H, Aoi N, Kato H, Araki J, Doi Okay, et al. Adipose tissue transforming beneath ischemia: loss of life of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg. 2010;126(6):1911–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deniz IA, Karbanova J, Wobus M, Bornhauser M, Wimberger P, Kuhlmann JD, et al. Mesenchymal stromal cell-associated migrasomes: a brand new supply of chemoattractant for cells of hematopoietic origin. Cell Commun Sign. 2023;21(1):36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McIntosh Okay, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal modifications in vitro. Stem Cells. 2006;24(5):1246–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *