Yan, R. et al. Structural foundation for the popularity of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).
Partitions, A. C. et al. Construction, perform, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6 (2020).
Wrapp, D. et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science 367, 1260–1263 (2020).
Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).
Henderson, R. et al. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol. 27, 925–933 (2020).
Yao, H. et al. Molecular structure of the SARS-CoV-2 virus. Cell 183, 730–738.e13 (2020).
Benton, D. J. et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327–330 (2020).
Ke, Z. et al. Buildings and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502 (2020).
Yang, J. et al. Molecular interplay and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).
Cao, W. et al. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein–protein interplay. Biophys. J. 120, 1011–1019 (2021).
Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10, e69091 (2021).
Hu, W. et al. Mechanical activation of spike fosters SARS-CoV-2 viral an infection. Cell Res. 31, 1047–1060 (2021).
Koehler, M. et al. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat. Commun. 12, 6977 (2021).
Bauer, M. S. et al. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc. Natl Acad. Sci. USA 119, e2114397119 (2022).
Zhu, R. et al. Power-tuned avidity of spike variant-ACE2 interactions considered on the single-molecule stage. Nat. Commun. 13, 7926 (2022).
Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).
Díaz-Salinas, M. A. et al. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. eLife 11, e75433 (2022).
Hsieh, C.-L. et al. Construction-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).
Xiong, X. et al. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 27, 934–941 (2020).
Benton, D. J. et al. The impact of the D614G substitution on the construction of the spike glycoprotein of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2022586118 (2021).
Zhang, J. et al. Structural influence on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).
Yin, W. et al. Buildings of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science 375, 1048–1053 (2022).
Gur, M. et al. Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. J. Chem. Phys. 153, 075101 (2020).
Turoňová, B. et al. In situ structural evaluation of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020).
Zimmerman, M. I. & Bowman, G. SARS-CoV-2 simulations go exascale to seize spike opening and reveal cryptic pockets throughout the proteome. Biophys. J. 120, 651–659 (2021).
Choi, Y. Okay. et al. Construction, dynamics, receptor binding, and antibody binding of the absolutely glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. J. Chem. Idea Comput. 17, 2479–2487 (2021).
Lu, M. et al. Actual-time conformational dynamics of SARS-CoV-2 spikes on virus particles. Cell Host Microbe 28, 880–891.e8 (2020).
Serrão, V. H. B. & Lee, J. E. FRETing over SARS-CoV-2: conformational dynamics of the spike glycoprotein. Cell Host Microbe 28, 778–779 (2020).
Yang, Z. et al. SARS-CoV-2 variants improve kinetic stability of open spike conformations as an evolutionary technique. mBio 13, e03227-21 (2022).
Hoffmann, D. et al. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation websites. EMBO J. 40, e108375 (2021).
Lim, Okay. et al. Millisecond dynamic of SARS-CoV-2 spike and its interplay with ACE2 receptor and small extracellular vesicles. J. Extracell. Vesicles 10, e12170 (2021).
Ando, T. et al. A high-speed atomic pressure microscope for finding out organic macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).
Amyot, R., Marchesi, A., Franz, C. M., Casuso, I. & Flechsig, H. Simulation atomic pressure microscopy for atomic reconstruction of biomolecular buildings from resolution-limited experimental photos. PLoS Comput. Biol. 18, e1009970 (2022).
McKinney, S. A., Joo, C. & Ha, T. Evaluation of single-molecule FRET trajectories utilizing hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).
McCallum, M., Partitions, A. C., Bowen, J. E., Corti, D. & Veesler, D. Construction-guided covalent stabilization of coronavirus spike glycoprotein trimers within the closed conformation. Nat. Struct. Mol. Biol. 27, 942–949 (2020).
Gobeil, S. M.-C. et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage on the S1/S2 junction. Cell Rep. 34, 108630 (2021).
Qu, Okay. et al. Engineered disulfide reveals structural dynamics of locked SARS-CoV-2 spike. PLoS Pathog. 18, e1010583 (2022).
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).
McCallum, M. et al. Structural foundation of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 375, 864–868 (2022).
Cerutti, G. et al. Cryo-EM construction of the SARS-CoV-2 Omicron spike. Cell Rep. 38, 110428 (2022).
Cui, Z. et al. Structural and useful characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 185, 860–871.e13 (2022).
Wieczór, M., Tang, P. Okay., Orozco, M. & Cossio, P. Omicron mutations improve interdomain interactions and scale back epitope publicity within the SARS-CoV-2 spike. iScience 26, 105981 (2023).
Guo, L. et al. Engineered trimeric ACE2 binds viral spike protein and locks it in ‘Three-up’ conformation to potently inhibit SARS-CoV-2 an infection. Cell Res. 31, 98–100 (2021).
Pak, A. J., Yu, A., Ke, Z., Briggs, J. A. G. & Voth, G. A. Cooperative multivalent receptor binding promotes publicity of the SARS-CoV-2 fusion equipment core. Nat. Commun. 13, 1002 (2022).
Zhou, P. et al. A pneumonia outbreak related to a brand new coronavirus of possible bat origin. Nature 579, 270–273 (2020).
Zhang, J. et al. Structural and useful influence by SARS-CoV-2 Omicron spike mutations. Cell Rep. 39, 110729 (2022).
Bauer, M. S. et al. Single-molecule pressure stability of the SARS-CoV-2–ACE2 interface in variants-of-concern. Nat. Nanotechnol. 19, 399–405 (2024).
Rico, F., Russek, A., González, L., Grubmüller, H. & Scheuring, S. Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed pressure spectroscopy and atomistic simulations. Proc. Natl Acad. Sci. USA 116, 6594–6601 (2019).
Valotteau, C., Sumbul, F. & Rico, F. Excessive-speed pressure spectroscopy: microsecond pressure measurements utilizing ultrashort cantilevers. Biophys. Rev. 11, 689–699 (2019).
Cossio, P., Hummer, G. & Szabo, A. Kinetic ductility and force-spike resistance of proteins from single-molecule pressure spectroscopy. Biophys. J. 111, 832–840 (2016).
Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and pressure measurement on the molecular stage. Biophys. J. 82, 3314–3329 (2002).
Kostrz, D. et al. A modular DNA scaffold to review protein–protein interactions at single-molecule decision. Nat. Nanotechnol. 14, 988–993 (2019).
Bell, G. I. Fashions for the precise adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell floor molecules. Science 200, 618–627 (1978).
De Souza, A. S. et al. Molecular dynamics evaluation of fast-spreading extreme acute respiratory syndrome coronavirus 2 variants and their results on the interplay with human angiotensin-converting enzyme 2. ACS Omega 7, 30700–30709 (2022).
Prévost, J. et al. Influence of temperature on the affinity of SARS-CoV-2 spike glycoprotein for host ACE2. J. Biol. Chem. 297, 101151 (2021).
Forest-Nault, C. et al. Influence of the temperature on the interactions between frequent variants of the SARS-CoV-2 receptor binding area and the human ACE2. Sci. Rep. 12, 11520 (2022).
Gong, S. Y. et al. Temperature influences the interplay between SARS-CoV-2 spike from Omicron subvariants and human ACE2. Viruses 14, 2178 (2022).
Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, Okay. & Schindler, H. Detection and localization of particular person antibody-antigen recognition occasions by atomic pressure microscopy. Proc. Natl Acad. Sci. USA 93, 3477–3481 (1996).
Rankl, C. et al. A number of receptors concerned in human rhinovirus attachment to reside cells. Proc. Natl Acad. Sci. USA 105, 17778–17783 (2008).
Stransky, F. et al. in Strategies in Enzymology Vol. 694 (eds Shon, M. J. & Yoon, T.-Y.) 51–82 (Tutorial Press, 2024).
Boehr, D. D., Nussinov, R. & Wright, P. E. The position of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).
Di Cera, E. Mechanisms of ligand binding. Biophys. Rev. 1, 011303 (2020).
Yurkovetskiy, L. et al. Structural and useful evaluation of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739–751.e8 (2020).
Weissman, D. et al. D614G spike mutation will increase SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23–31.e4 (2021).
Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).
Ozono, S. et al. SARS-CoV-2 D614G spike mutation will increase entry effectivity with enhanced ACE2-binding affinity. Nat. Commun. 12, 848 (2021).
Mannar, D. et al. SARS-CoV-2 variants of concern: spike protein mutational evaluation and epitope for broad neutralization. Nat. Commun. 13, 4696 (2022).
Planas, D. et al. Appreciable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).
Kumar, S. et al. Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly affect its conformation, fusogenicity, and neutralization sensitivity. J. Virol. 97, e00922–e00923 (2023).
Temmam, S. et al. Bat coronaviruses associated to SARS-CoV-2 and infectious for human cells. Nature 604, 330–336 (2022).
Gámbaro, F. et al. Introductions and early unfold of SARS-CoV-2 in France, 24 January to 23 March 2020. Eurosurveillance 25, 2001200 (2020).
Güthe, S. et al. Very quick folding and affiliation of a trimerization area from bacteriophage T4 fibritin. J. Mol. Biol. 337, 905–915 (2004).
Pallesen, J. et al. Immunogenicity and buildings of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).
Heinz, F. X. & Stiasny, Okay. Distinguishing options of present COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of motion. npj Vaccines 6, 104 (2021).
Zhang, C. et al. Growth and structural foundation of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat. Commun. 12, 264 (2021).
Yin, J. et al. Genetically encoded brief peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).
Schoeler, C. et al. Ultrastable cellulosome-adhesion advanced tightens underneath load. Nat. Commun. 5, 5635 (2014).
Jobst, M. A., Schoeler, C., Malinowska, Okay. & Nash, M. A. Investigating receptor-ligand programs of the cellulosome with AFM-based single-molecule pressure spectroscopy. J. Vis. Exp. 20, 50950 (2013).
Wang, Y. J. et al. Combining DNA scaffolds and acoustic pressure spectroscopy to characterize particular person protein bonds. Biophys. J. 122, 2518–2530 (2023).
Revyakin, A., Ebright, R. H. & Strick, T. R. Single-molecule DNA nanomanipulation: improved decision by means of use of shorter DNA fragments. Nat. Strategies 2, 127–138 (2005).
Duboc, C., Fan, J., Graves, E. T. & Strick, T. R. in Strategies in Enzymology Vol. 582 (eds Spies, M. & Chemla, Y. R.) 275–296 (Tutorial Press, 2017).
Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).