Modulation of SARS-CoV-2 spike binding to ACE2 by means of conformational choice


  • Yan, R. et al. Structural foundation for the popularity of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Partitions, A. C. et al. Construction, perform, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wrapp, D. et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science 367, 1260–1263 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henderson, R. et al. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol. 27, 925–933 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, H. et al. Molecular structure of the SARS-CoV-2 virus. Cell 183, 730–738.e13 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benton, D. J. et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327–330 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, Z. et al. Buildings and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Molecular interplay and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, W. et al. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein–protein interplay. Biophys. J. 120, 1011–1019 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10, e69091 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. et al. Mechanical activation of spike fosters SARS-CoV-2 viral an infection. Cell Res. 31, 1047–1060 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koehler, M. et al. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat. Commun. 12, 6977 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, M. S. et al. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc. Natl Acad. Sci. USA 119, e2114397119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, R. et al. Power-tuned avidity of spike variant-ACE2 interactions considered on the single-molecule stage. Nat. Commun. 13, 7926 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz-Salinas, M. A. et al. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. eLife 11, e75433 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, C.-L. et al. Construction-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, X. et al. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 27, 934–941 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benton, D. J. et al. The impact of the D614G substitution on the construction of the spike glycoprotein of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2022586118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Structural influence on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, W. et al. Buildings of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science 375, 1048–1053 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gur, M. et al. Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. J. Chem. Phys. 153, 075101 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turoňová, B. et al. In situ structural evaluation of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmerman, M. I. & Bowman, G. SARS-CoV-2 simulations go exascale to seize spike opening and reveal cryptic pockets throughout the proteome. Biophys. J. 120, 651–659 (2021).

    Article 

    Google Scholar
     

  • Choi, Y. Okay. et al. Construction, dynamics, receptor binding, and antibody binding of the absolutely glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. J. Chem. Idea Comput. 17, 2479–2487 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, M. et al. Actual-time conformational dynamics of SARS-CoV-2 spikes on virus particles. Cell Host Microbe 28, 880–891.e8 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrão, V. H. B. & Lee, J. E. FRETing over SARS-CoV-2: conformational dynamics of the spike glycoprotein. Cell Host Microbe 28, 778–779 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. et al. SARS-CoV-2 variants improve kinetic stability of open spike conformations as an evolutionary technique. mBio 13, e03227-21 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, D. et al. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation websites. EMBO J. 40, e108375 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, Okay. et al. Millisecond dynamic of SARS-CoV-2 spike and its interplay with ACE2 receptor and small extracellular vesicles. J. Extracell. Vesicles 10, e12170 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ando, T. et al. A high-speed atomic pressure microscope for finding out organic macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amyot, R., Marchesi, A., Franz, C. M., Casuso, I. & Flechsig, H. Simulation atomic pressure microscopy for atomic reconstruction of biomolecular buildings from resolution-limited experimental photos. PLoS Comput. Biol. 18, e1009970 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKinney, S. A., Joo, C. & Ha, T. Evaluation of single-molecule FRET trajectories utilizing hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCallum, M., Partitions, A. C., Bowen, J. E., Corti, D. & Veesler, D. Construction-guided covalent stabilization of coronavirus spike glycoprotein trimers within the closed conformation. Nat. Struct. Mol. Biol. 27, 942–949 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gobeil, S. M.-C. et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage on the S1/S2 junction. Cell Rep. 34, 108630 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu, Okay. et al. Engineered disulfide reveals structural dynamics of locked SARS-CoV-2 spike. PLoS Pathog. 18, e1010583 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCallum, M. et al. Structural foundation of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 375, 864–868 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerutti, G. et al. Cryo-EM construction of the SARS-CoV-2 Omicron spike. Cell Rep. 38, 110428 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, Z. et al. Structural and useful characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 185, 860–871.e13 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wieczór, M., Tang, P. Okay., Orozco, M. & Cossio, P. Omicron mutations improve interdomain interactions and scale back epitope publicity within the SARS-CoV-2 spike. iScience 26, 105981 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, L. et al. Engineered trimeric ACE2 binds viral spike protein and locks it in ‘Three-up’ conformation to potently inhibit SARS-CoV-2 an infection. Cell Res. 31, 98–100 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pak, A. J., Yu, A., Ke, Z., Briggs, J. A. G. & Voth, G. A. Cooperative multivalent receptor binding promotes publicity of the SARS-CoV-2 fusion equipment core. Nat. Commun. 13, 1002 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, P. et al. A pneumonia outbreak related to a brand new coronavirus of possible bat origin. Nature 579, 270–273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Structural and useful influence by SARS-CoV-2 Omicron spike mutations. Cell Rep. 39, 110729 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, M. S. et al. Single-molecule pressure stability of the SARS-CoV-2–ACE2 interface in variants-of-concern. Nat. Nanotechnol. 19, 399–405 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rico, F., Russek, A., González, L., Grubmüller, H. & Scheuring, S. Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed pressure spectroscopy and atomistic simulations. Proc. Natl Acad. Sci. USA 116, 6594–6601 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valotteau, C., Sumbul, F. & Rico, F. Excessive-speed pressure spectroscopy: microsecond pressure measurements utilizing ultrashort cantilevers. Biophys. Rev. 11, 689–699 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cossio, P., Hummer, G. & Szabo, A. Kinetic ductility and force-spike resistance of proteins from single-molecule pressure spectroscopy. Biophys. J. 111, 832–840 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and pressure measurement on the molecular stage. Biophys. J. 82, 3314–3329 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostrz, D. et al. A modular DNA scaffold to review protein–protein interactions at single-molecule decision. Nat. Nanotechnol. 14, 988–993 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, G. I. Fashions for the precise adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell floor molecules. Science 200, 618–627 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Souza, A. S. et al. Molecular dynamics evaluation of fast-spreading extreme acute respiratory syndrome coronavirus 2 variants and their results on the interplay with human angiotensin-converting enzyme 2. ACS Omega 7, 30700–30709 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prévost, J. et al. Influence of temperature on the affinity of SARS-CoV-2 spike glycoprotein for host ACE2. J. Biol. Chem. 297, 101151 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forest-Nault, C. et al. Influence of the temperature on the interactions between frequent variants of the SARS-CoV-2 receptor binding area and the human ACE2. Sci. Rep. 12, 11520 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, S. Y. et al. Temperature influences the interplay between SARS-CoV-2 spike from Omicron subvariants and human ACE2. Viruses 14, 2178 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, Okay. & Schindler, H. Detection and localization of particular person antibody-antigen recognition occasions by atomic pressure microscopy. Proc. Natl Acad. Sci. USA 93, 3477–3481 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rankl, C. et al. A number of receptors concerned in human rhinovirus attachment to reside cells. Proc. Natl Acad. Sci. USA 105, 17778–17783 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stransky, F. et al. in Strategies in Enzymology Vol. 694 (eds Shon, M. J. & Yoon, T.-Y.) 51–82 (Tutorial Press, 2024).

  • Boehr, D. D., Nussinov, R. & Wright, P. E. The position of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Cera, E. Mechanisms of ligand binding. Biophys. Rev. 1, 011303 (2020).

    Article 

    Google Scholar
     

  • Yurkovetskiy, L. et al. Structural and useful evaluation of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739–751.e8 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissman, D. et al. D614G spike mutation will increase SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23–31.e4 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozono, S. et al. SARS-CoV-2 D614G spike mutation will increase entry effectivity with enhanced ACE2-binding affinity. Nat. Commun. 12, 848 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannar, D. et al. SARS-CoV-2 variants of concern: spike protein mutational evaluation and epitope for broad neutralization. Nat. Commun. 13, 4696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planas, D. et al. Appreciable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. et al. Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly affect its conformation, fusogenicity, and neutralization sensitivity. J. Virol. 97, e00922–e00923 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Temmam, S. et al. Bat coronaviruses associated to SARS-CoV-2 and infectious for human cells. Nature 604, 330–336 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gámbaro, F. et al. Introductions and early unfold of SARS-CoV-2 in France, 24 January to 23 March 2020. Eurosurveillance 25, 2001200 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Güthe, S. et al. Very quick folding and affiliation of a trimerization area from bacteriophage T4 fibritin. J. Mol. Biol. 337, 905–915 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Pallesen, J. et al. Immunogenicity and buildings of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, F. X. & Stiasny, Okay. Distinguishing options of present COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of motion. npj Vaccines 6, 104 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. et al. Growth and structural foundation of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat. Commun. 12, 264 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, J. et al. Genetically encoded brief peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoeler, C. et al. Ultrastable cellulosome-adhesion advanced tightens underneath load. Nat. Commun. 5, 5635 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jobst, M. A., Schoeler, C., Malinowska, Okay. & Nash, M. A. Investigating receptor-ligand programs of the cellulosome with AFM-based single-molecule pressure spectroscopy. J. Vis. Exp. 20, 50950 (2013).


    Google Scholar
     

  • Wang, Y. J. et al. Combining DNA scaffolds and acoustic pressure spectroscopy to characterize particular person protein bonds. Biophys. J. 122, 2518–2530 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Revyakin, A., Ebright, R. H. & Strick, T. R. Single-molecule DNA nanomanipulation: improved decision by means of use of shorter DNA fragments. Nat. Strategies 2, 127–138 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duboc, C., Fan, J., Graves, E. T. & Strick, T. R. in Strategies in Enzymology Vol. 582 (eds Spies, M. & Chemla, Y. R.) 275–296 (Tutorial Press, 2017).

  • Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *