Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).
Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997).
Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).
Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).
Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).
Feringa, B. L. The artwork of constructing small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).
Leigh, D. A., Wong, J. Ok. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).
Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Gentle-powered autonomous and directional molecular movement of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).
Guentner, M. et al. Daylight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).
Cheng, C. et al. A synthetic molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).
Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fueled directional rotation a few covalent single bond. Nature 604, 80–85 (2022).
Pumm, A.-Ok. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).
Zhang, L. et al. An electrical molecular motor. Nature 613, 280–286 (2023).
Borsley, S., Leigh, D. & Roberts, B. M. W. Molecular ratchets and kinetic asymmetry: giving chemistry course. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202400495 (2024).
Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular programs. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202306569 (2024).
Wang, P.-L. et al. Transducing chemical vitality via catalysis by a man-made molecular motor. Nature 637, 594–600 (2025).
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Synthetic molecular machines. Chem. Rev. 115, 10081–10206 (2015).
Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).
Baroncini, M., Silvi, S. & Credi, A. Picture- and redox-driven synthetic molecular motors. Chem. Rev. 120, 200–268 (2020).
Dattler, D. et al. Design of collective motions from artificial molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).
Moulin, E., Faour, L., Carmona‐Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli‐responsive supplies. Adv. Mater. 32, 1906036 (2020).
Perrot, A., Moulin, E. & Giuseppone, N. Extraction of mechanical work from stimuli-responsive molecular programs and supplies. Tendencies Chem. 3, 926–942 (2021).
Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Gentle-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).
Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).
Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second technology light-driven molecular motors. Unidirectional rotation managed by a single stereogenic middle with near-perfect photoequilibria and acceleration of the pace of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).
Li, Q. et al. Macroscopic contraction of a gel induced by the built-in movement of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).
Foy, J. T. et al. Twin-light management of nanomachines that combine motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).
Perrot, A., Wang, W., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels via rotation of sunshine‐pushed molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).
Gao, C., Vargas Jentzsch, A., Moulin, E. & Giuseppone, N. Gentle-driven molecular whirligig. J. Am. Chem. Soc. 144, 9845–9852 (2022).
García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).
Wang, W.-Z. et al. Gentle-driven molecular motors enhance the selective transport of alkali metallic ions via phospholipid bilayers. J. Am. Chem. Soc. 143, 15653–15660 (2021).
Qutbuddin, Y. et al. Gentle‐activated artificial rotary motors in lipid membranes induce form modifications via membrane growth. Adv. Mater. https://doi.org/10.1002/adma.202311176 (2024).
Daou, D. et al. Out‐of‐equilibrium mechanical disruption of β‐amyloid‐like fibers utilizing gentle‐pushed molecular motors. Adv. Mater. https://doi.org/10.1002/adma.202311293 (2024).
Ariga, Ok., Yamauchi, Y., Mori, T. & Hill, J. P. twenty fifth anniversary article: what might be finished with the Langmuir–Blodgett methodology? Latest developments and its crucial function in supplies science. Adv. Mater. 25, 6477–6512 (2013).
Oliveira, O. N., Caseli, L. & Ariga, Ok. The previous and the way forward for Langmuir and Langmuir–Blodgett movies. Chem. Rev. 122, 6459–6513 (2022).
Ariga, Ok. Don’t overlook Langmuir–Blodgett movies 2020: interfacial nanoarchitectonics with molecules, supplies, and dwelling objects. Langmuir 36, 7158–7180 (2020).
Kim, I., Rabolt, J. F. & Stroeve, P. Dynamic monolayer conduct of a photo-responsive azobenzene surfactant. Colloids Surf. A 171, 167–174 (2000).
Backus, E. H. G., Kuiper, J. M., Engberts, J. B. F. N., Poolman, B. & Bonn, M. Reversible optical management of monolayers on water via photoswitchable lipids. J. Phys. Chem. B 115, 2294–2302 (2011).
Ando, E., Miyazaki, J., Morimoto, Ok., Nakahara, H. & Fukuda, Ok. J-aggregation of photochromic spiropyran in Langmuir–Blodgett movies. Skinny Stable Movies 133, 21–28 (1985).
Nakazawa, T., Azumi, R., Sakai, H., Abe, M. & Matsumoto, M. Brewster angle microscopic observations of the langmuir movies of amphiphilic spiropyran throughout compression and below UV illumination. Langmuir 20, 5439–5444 (2004).
Rossos, A. Ok. et al. Photochromism of amphiphilic dithienylethenes as Langmuir–Schaefer movies. Langmuir 34, 10905–10912 (2018).
Karthaus, O., Shimomura, M., Hioki, M., Tahara, R. & Nakamura, H. Reversible photomorphism in floor monolayers. J. Am. Chem. Soc. 118, 9174–9175 (1996).
Cheng, J., Štacko, P., Rudolf, P., Gengler, R. Y. N. & Feringa, B. L. Bidirectional photomodulation of floor pressure in Langmuir movies. Angew. Chem. Int. Ed. 56, 291–296 (2017).
De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).
Aida, T., Meijer, E. W. & Stupp, S. I. Purposeful supramolecular polymers. Science 335, 813–817 (2012).
Roy, N., Schädler, V. & Lehn, J.-M. Supramolecular polymers: Inherently dynamic supplies. Acc. Chem. Res. 57, 349–361 (2024).
Luviano, A. S., Campos-Terán, J., Langevin, D., Castillo, R. & Espinosa, G. Mechanical properties of DPPC–POPE blended Langmuir monolayers. Langmuir 35, 16734–16744 (2019).
Pallas, N. R. & Pethica, B. A. Liquid-expanded to liquid-condensed transition in lipid monolayers on the air/water interface. Langmuir 1, 509–513 (1985).
Davies, J. T. & Rideal, E. Ok. Interfacial Phenomena (Educational Press, 1963).
Dervichian, D. G. Modifications of part and transformations of upper order in monolayers. J. Chem. Phys. 7, 931–948 (1939).
Carino, S. R. et al. Actual-time grazing incidence X-ray diffraction research of polymerizing n-octadecyltrimethoxysilane Langmuir monolayers on the air/water interface. J. Am. Chem. Soc. 123, 767–768 (2001).
Giuseppone, N. & Walther, A. Out‐of‐Equilibrium (Supra)molecular Methods and Supplies (Wiley, 2021); https://doi.org/10.1002/9783527821990