OECD–FAO Agricultural Outlook 2020–2029 (OECD, 2020).
Werpy, T. A., Holladay, J. E. & White, J. F. Prime Worth Added Chemical substances From Biomass: Outcomes of Screening for Potential Candidates from Sugars and Synthesis Fuel (US Division of Power, 2004).
Dodekatos, G., Schünemann, S. & Tüysüz, H. Current advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).
Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. From glycerol to value-added merchandise. Angew. Chem. Int. Ed. 46, 4434–4440 (2007).
Dias da Silva Ruy, A. et al. Market prospecting and evaluation of the financial potential of glycerol from biodiesel. In Biotechnological Purposes of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen, 2020).
Katryniok, B. et al. Selective catalytic oxidation of glycerol: views for top worth chemical compounds. Inexperienced Chem. 13, 1960–1979 (2011).
Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton course of utilizing a secure NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).
Kobori, Y., Myles, D. C. & Whitesides, G. M. Substrate specificity and carbohydrate synthesis utilizing transketolase. J. Org. Chem. 57, 5899–5907 (1992).
Liu, Z., Xiao, C., Lin, S., Tittmann, Okay. & Dai, S. Multifaceted position of the substrate phosphate group in transketolase catalysis. ACS Catal. 14, 355–365 (2024).
Horecker, B. L., Hurwitz, J. & Smyrniotis, P. Z. Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Am. Chem. Soc. 78, 692–694 (1956).
Munos, J. W., Pu, X., Mansoorabadi, S. O., Kim, H. J. & Liu, H.-W. A secondary kinetic isotope impact research of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase-catalyzed response: proof for a retroaldol–aldol rearrangement. J. Am. Chem. Soc. 131, 2048–2049 (2009).
Shaeri, J., Wohlgemuth, R. & Woodley, J. M. Semiquantitative course of screening for the biocatalytic synthesis of d-xylulose-5-phosphate. Org. Course of Res. Dev. 10, 605–610 (2006).
Cai, G. et al. Thermodynamic investigation of inhibitor binding to 1-deoxy-d-xylulose-5-phosphate reductoisomerase. ACS Med. Chem. Lett. 3, 496–500 (2012).
Kumar, M., Meena, B., Yu, A., Solar, C. & Challapalli, S. Developments in catalysts for glycerol oxidation through photo-/electrocatalysis: a complete evaluate of current developments. Inexperienced Chem. 25, 8411–8443 (2023).
Xiao, Y. et al. Selective photoelectrochemical oxidation of glycerol to glyceric acid on (002) sides uncovered WO3 nanosheets. Angew. Chem. Int. Ed. 63, e202319685 (2024).
Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to excessive value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).
Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the substitute photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).
Teng, Z. et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical manufacturing. Nat. Chem. 16, 1250–1260 (2024).
Savateev, A., Pronkin, S., Willinger, M. G., Antonietti, M. & Dontsova, D. In the direction of natural zeolites and inclusion catalysts: Heptazine imide salts can trade metallic cations within the stable state. Chem. Asian J. 12, 1517–1522 (2017).
Wirnhier, E. et al. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1−x)3⋅LiCl]: a crystalline 2D carbon nitride community. Chem. Eur. J. 17, 3213–3221 (2011).
Schlomberg, H. et al. Structural Insights into poly(heptazine imides): a light-storing carbon nitride materials for darkish photocatalysis. Chem. Mater. 31, 7478–7486 (2019).
Lee, J. H. et al. Carbon dioxide mediated, reversible chemical hydrogen storage utilizing a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2, 9490–9495 (2014).
Zhang, J.-R. et al. Correct Okay-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations. Phys. Chem. Chem. Phys. 21, 22819–22830 (2019).
Wang, W. et al. Potassium-Ion-assisted regeneration of energetic cyano teams in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen discount. Angew. Chem. Int. Ed. 58, 16644–16650 (2019).
Kessler, F. Okay. et al. Useful carbon nitride supplies—design methods for electrochemical units. Nat. Rev. Mater. 2, 17030 (2017).
Lin, L., Yu, Z. & Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58, 6164–6175 (2019).
Lin, L. et al. Molecular-level insights on the reactive aspect of carbon nitride single crystals photocatalysing total water splitting. Nat. Catal. 3, 649–655 (2020).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Bredas, J.-L. Thoughts the hole! Mater. Horiz. 1, 17–19 (2014).
Vogt, C. & Weckhuysen, B. M. The idea of energetic web site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).
Wang, C., Wang, Z., Mao, S., Chen, Z. & Wang, Y. Coordination surroundings of energetic websites and their impact on catalytic efficiency of heterogeneous catalysts. Chin. J. Catal. 43, 928–955 (2022).
Wang, H., Cui, Y., Shi, J., Tao, X. & Zhu, G. Porous carbon supported Lewis acid–base websites as metal-free catalysts for the carbonylation of glycerol with urea. Appl. Catal. B 330, 122457 (2023).
An, Z. et al. Pt1 enhanced C–H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 13, 5467 (2022).
Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone through enhanced center hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144, 7720–7730 (2022).
Mörsdorf, J.-M. & Ballmann, J. Coordination-induced radical era: selective hydrogen atom abstraction through managed Ti–C σ-bond homolysis. J. Am. Chem. Soc. 145, 23452–23460 (2023).
Bellotti, P., Huang, H. M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).
Zhang, X. et al. Quick modulation of d-band holes amount within the early response levels for enhancing acidic oxygen evolution. Angew. Chem. Int. Ed. 62, e202308082 (2023).
Hao, Y. et al. Electrode/electrolyte synergy for concerted promotion of electron and proton transfers towards environment friendly impartial water oxidation. Angew. Chem. Int. Ed. 62, e202303200 (2023).
Dai, X. et al. Cardio oxidative synthesis of formamides from amines and bioderived formyl surrogates. Angew. Chem. Int. Ed. 63, e202402241 (2024).
Zhang, L., Ma, L., Yuan, J., Zhang, X.-M. & Tang, Z. Tuning band constructions of Hf-PCN-224(M) for β-carbonyl C(sp3)-H bond activation and difunctionalization: tandem C(sp3) radical cross-coupling via photoredox. Appl. Catal. B 321, 122049 (2023).
Teng, Z. et al. Atomically remoted Sb(CN)3 on sp2-c-COFs with balanced hydrophilic and oleophilic websites for photocatalytic C–H activation. Sci. Adv. 10, eadl5432 (2024).
Chang, C. R., Yang, X. F., Lengthy, B. & Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) floor: understanding the catalytic conduct of bulk gold. ACS Catal. 3, 1693–1699 (2013).
Huang, X., Guo, Y., Zou, Y. & Jiang, J. Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt(oxy) hydroxide by high-valent cobalt redox facilities. Appl. Catal. B 309, 121247 (2022).
Kim, H. J., Lee, J., Inexperienced, S. Okay., Huber, G. W. & Kim, W. B. Selective glycerol oxidation by electrocatalytic dehydrogenation. ChemSusChem 7, 1051–1056 (2014).
Jedsukontorn, T., Ueno, T., Saito, N. & Hunsom, M. Narrowing band hole power of faulty black TiO2 fabricated by answer plasma course of and its photocatalytic exercise on glycerol transformation. J. Alloys Compd. 757, 188–199 (2018).
Choi, Y.-B., Nunotani, N., Morita, Okay. & Imanaka, N. Manufacturing of hydroxypyruvic acid by glycerol oxidation over Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 catalysts. Catalysts 12, 69 (2022).
Jedsukontorn, T., Saito, N. & Hunsom, M. Photocatalytic conduct of metal-decorated TiO2 and their catalytic exercise for transformation of glycerol to worth added compounds. Mol. Catal. 432, 160–171 (2017).
Solar, Y. et al. PtBi intermetallic compounds with enhanced stability in direction of base-free selective oxidation of glycerol. Ind. Eng. Chem. Res. 62, 17503–17512 (2023).
Dou, J. et al. Carbon supported Pt9Sn1 nanoparticles as an environment friendly nanocatalyst for glycerol oxidation. Appl. Catal. B 180, 78–85 (2016).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Wu, Q. et al. A metal-free photocatalyst for extremely environment friendly hydrogen peroxide photoproduction in actual seawater. Nat. Commun. 12, 483 (2021).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete power calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Lu, Y. et al. Photo voltaic-driven extremely selective conversion of glycerol to dihydroxyacetone utilizing floor atom engineered BiVO4 photoanodes. Nat. Commun. 15, 5475 (2024).
Nørskov, J. Okay. et al. Origin of the overpotential for oxygen discount at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).